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Abstract—Multi-Robot Systems (MRS) is one research area
where Artificial Intelligence and robotic techniques can be effi-
ciently integrated. In this paper, we attempt to highlight some
common aspects of the robotic and AI literature on multi-robot
systems by surveying the most recent works in such an area.
In particular, we focus on works that deal with the problem of
coordinating a team of autonomous robots perceiving the world
and acting in it to carry out a common task. By surveying
these works, we attempt to give a new perspective on the
problem of multi-robot world modeling and distributed multi-
robot coordination.

I. INTRODUCTION

In recent years, intelligent robots started to enter our lives
moving out from research labs. Indeed, their employment
reaches a broad range of fields, finding several applications
in human-dangerous environments exploration, surveillance,
health care assistance or domestic environments and entertain-
ment. The Multi-Robot Systems (MRSs) research area of study
constitutes one of the cross-points between AI and Robotics.
In fact, it aims at developing systems of multiple robots that
are capable of coexisting in various scenarios and of achieving
common goals.

Generally, Multi-robot systems can be categorized in three
main groups based on their structure. In particular, they can
be designed as centralized, decentralized or distributed. Cen-
tralized systems are based on a central unit that allows for
communication, coordination and information storage for the
robots. This approach to MRSs is an efficient choice in terms
of consistency and cohesion of the system, but it penalizes real
applications due to the common drawbacks of single-point-
of-failure frameworks. Conversely, in a decentralized setting
each robot has a complete and redundant representation of the
world, built through the exchange of broadcasted messages
among the robots. Finally, in a distributed approach, robots
take their decisions based on their partial internal representa-
tion of the world updated with the information obtained from
their teammates.

In this survey, we will focus on distributed multi-robot
systems. In particular, we are interested in the problem of
allowing a group of autonomous robots to perceive and act in
an environment that might or might not be known a-priori. As
an example, let’s consider the typical problem faced in disaster
scenarios. In order to perform tasks in a coordinated manner
in such scenarios, a suitable representation of the operational
environment needs to be given to the robots. However, the
robots must build a new model of the environment since
it often changes during disasters. To this end, both position
estimation and mapping problems must be solved concurrently,

leading to the problem of Simultaneous Localization and Map-
ping (SLAM), extensively studied in mobile robotics. Once
the world has been modeled, the robots have to coordinate in
order to effectively carry out the given assignments. To this
end, several approaches to multi-robot coordination have been
proposed in literature.

Abstracting away from the example scenario, the problem
can be generalized as shown in Fig. 1. This figure sketches
the data flow of a multi-robot system mainly composed by two
fundamental parts: the distributed world model (DWM) and the
task allocation modules (Φ). The DWM module is in charge
of representing and sharing information about the perceived
world, and therefore, to build a reliable world representation
for reasoning about the operational environment. The module
labeled Φ is instead responsible of coordinating the robots
within such an environment by assigning each task tj to the
best robot ri.

Fig. 1. Data flow sketch for a general multi-robot system able to perceive an
act in a given environment. The distributed world model module is in charge
of representing the operational environment. Instead, the module Φ assigns to
each task tj a robot ri based on the current representation of the world.

In the next section we will survey the most recent ap-
proaches to multi-robot world modeling and coordination.
Then, we will conclude the paper discussing the common
aspects of the surveyed related works to give a new perspective
on the two areas analyzed.

II. MULTI-ROBOT SYSTEMS

As previously stated, in order to allow a team of robots
to carry out a task in a coordinated manner, two fundamental
elements are necessary: a suitable representation of the world
and a reliable coordination technique. There are approaches
that do not require an explicit representation of the world but
they are outside the scope of this work. Because of this fact,
in this section we will first review several world modeling
approaches proposed in the literature. Next, we will discuss
multiple recent works in multi-robot coordination, referring
the reader to previous surveys for a more detailed analysis of
prior works.



A. Multi-robot World Modeling

World modelling is a broad research problem that can be
addressed from a variety of perspectives. In general, robots
use their own perception to acquire a representation of the
environment suitable for the task it has to accomplish. For ex-
ample, in a robot soccer domain, the model of the environment
has to include static and dynamic tracked objects where the
cooperation of the team is crucial due to the robots’ narrow
field of view [1]. Cooperative localization approaches [2], [3],
[4] have also interesting advantages in the absence of an a
priori model of the environment where, by relying upon inter-
robot measurements and the correlations established between
them, an update on the position estimation of one robot
improves the estimations of the rest of the team.

In the literature, different kind of map representations have
been proposed, usually grouped as metric, semantic [5] and
topological maps [6]. In this section, we focus on how an
accurate metric representation can be obtained by a team of
robots, referring the reader to other surveys for more details on
semantic and topological mapping [7], [8], where approaches
to topological map merging [9], [10], [11] could be also
suitable for multi-robot map reconstruction.

Due to the different sources of errors present in the sensors
used during the map acquisition process, the SLAM problem
is usually approached using a probabilistic formulation. Over
the years, different techniques have been proposed in the
framework of Bayesian filtering, such as Extended Kalman
Filters (EKFs), Extended Information Filters (EIFs) and Par-
ticle Filters leading to different kind of maps, from feature-
based stochastic maps to dense maps like occupancy grid maps.
We refer the reader to [8], [12] for a complete review of
these approaches applied to single-robot systems. More recent
approaches to the SLAM problem have their origin in the early
work by Lu and Milios [13] where the SLAM problem is
represented as a graph of spatial relationships between poses
(i.e., pose-graph) of the complete robot trajectory, optimally
estimated using a maximum likelihood criterion. Current suc-
cessful implementations like iSAM [14] or g2o [15] allow to
solve the SLAM problem in real time.

The extension of the aforemetioned single-robot ap-
proaches to multi-robot systems has recently interested the
SLAM community. In fact, these approaches present multiple
advantages, such as an increased accuracy and robustness or
the possibility of cooperation to cover larger environments in
less time. However, by increasing the number of robots, the
complexity of the problem increases leading to new important
issues related to data fusion, inter-robot data association (i.e.,
map matching) or communication constraints.

During the data fusion process it is important to take into
account the problem of double-counting or data incest. This
is a common problem in decentralized or distributed networks
and is exemplified in the following way: consider a robot A
which computes its position xA using its own observations zA.
Then, it communicates its position to a robot B, which uses
this received information and its measurements zB to improve
its position xB which sends later to robot A. At this point,
robot A can not treat xB directly because it already contains
information from A and it would be integrating its own
information twice, producing inconsistent estimates. To solve

this problem, several techniques were proposed: [16] uses a
Channel Filter to substract the information that has already
sent through the network, [17] keeps track of the origins of
measurements sent over the network and [18] presents the
Covariance Intersection technique which provides consistent
solutions, when correlations between estimates are unknown.

Data fusion can be easily achieved when global or relative
positions between robots are known; however this is a strong
assumption only satisfied in an idealistic scenario. Therefore,
a considerable amount of SLAM approaches have considered
robots that lack any prior knowledge of their initial locations or
their relative positions with respect to their teammates. In this
context, Thrun and Liu [19] exploit the inherent decoupling
property of EIFs to propose a decentralized SLAM approach.
This technique allows to identify overlapping maps acquired by
different robots and recover the joint map, even with unknown
initial robot positions or landmark correspondences between
maps.

Zhou [20] presents a multi-robot EKF-based SLAM ap-
proach, where robots acquire relative pose measurements to
determine the transformations between pairs of maps. Common
landmarks are also identified through an improved Nearest
Neighbor method and by exploiting the Mahalanobis distance
to validate their correspondences. This process reduces the
overall map complexity and increases its accuracy. Once two
maps from different robots have been merged they keep
working using this fused map.

Howards [21] proposes a multi-robot SLAM approach
with particle filters in occupancy grid maps, where inter-robot
relations are determined through mutual detection using retro-
reflective markers mounted on the robots. The maps acquired
by different robots are fused into a single centralized map
once the encounter between them takes place. An improved
distributed version using a Rao-Blackwellized particle filter is
implemented in [22]. Each time the robots meet they share
all the measurements gathered since the last communication,
which is incorporated into the other robots’ map accounting
also for the uncertainty of their relative transformations.

Addressing the multi-robot SLAM problem with the more
recent nonlinear optimization approaches has one additional
interesting advantage: the complete individual robot trajecto-
ries are also recomputed during the optimization process to
minimize the joint overall map error. In this context, Andersson
and Nygårds [23] present a Collaborative Smoothing and
Mapping (C-SAM) algorithm to build a joint graph-based
map with features using a team of robots. It is a centralized
solution to the problem in which graphs from different robots
are related through base nodes and rendezvous measurements,
which allow to represent them in a common reference frame.

An extension of iSAM for multi-robot pose-graph SLAM is
presented in [24]. Robots build incrementally their own maps
which are related through relative measurements obtained
during robot encounters. The introduction of anchor nodes
allows to express all maps in a common global frame while
each robot keeps working in its own coordinate system.

All these approaches provide solutions to the problem of
modeling the environment with a team of robots, however they
consider few communications aspects. Normally, two robots
can share information only when they are within a certain



communication range, using a connection with a limited band-
width. Such limitations are often ignored, often assuming that
the robots can either share their complete knowledge of the
map or the complete history of measurements acquired.

To this end, in [25] the authors propose an extended
Smoothing and Mapping approach called Decentralized Data
Fusion (DDF-SAM) using factor graphs with landmarks. In
this approach, each robot maintains its own local map whose
landmarks are marginalized to create a summarized graph
which is sent to other robots. This compressed map together
with those received from other robots are fused in a neighbor-
hood map which is updated as new information is received.
However this approach does not allow for a feedback from the
neighborhood map to their local maps to prevent the double-
counting problem. This issue was addressed a subsequent
work [26] where only one single structure is needed to manage
both local and neighbor maps and the anti-factor is introduced
to subtract replicated information. The data association is
based on a triangulation algorithm that provides matching
between maps.

In [27], the authors propose a multi-robot graph-based
SLAM approach which makes use of condensed measure-
ments [28] and a communication protocol to efficiently ex-
change information among the robots. These condensed mea-
surements are a summarized version of each robot’s graph
containing only the relevant information for other robots,
reducing the communication overload and the size of the
optimization problem each robot has to solve. Furthermore,
these condensed measurements do not require any special
treatment to be included in the optimization back-end (g2o
in this case) and are computed only with each robot’s own
information to avoid the multiple integration of information.
Relations between pair of maps are determined by a robust
data association algorithm each time robots are in the same
communication range.

B. Distributed Task Allocation

Distributed Task Allocation (DTA) is the problem of co-
ordinating multiple cooperative units with a common goal in
various scenarios. Such a problem introduces different issues
to be tackled and different constraints to be satisfied. In a
MRS scenario, in fact, we can have different configurations.
For instance, not only the number of robots operating within
the same environment is important, but also if the robots share
the same goal or if the team is divided into sub-teams with
different goals. In this latter setting, the teams have to consider
conflicting behaviors and have to model other teams as an
active part of the environment or even as adversarial agents.

Additionally, apart from the kind of scenario that we are
facing, an MRS can have different features depending on the
kind of coordination criterion itself. In particular, we can have
explicit or implicit coordination. The main difference in these
two configuration is the way in which the robots exchange
local information. The former case implies an explicit sharing
of information, and agreement of the robots about the best
mapping between robots and task, while the latter allows the
team of robot to coordinate even if the world model of each
robot is not known by all the units. For example, a DTA
approach based on utility estimations belongs to this class.

Despite the kind of coordination requirements and the
operating scenario the problem of multiple robot coordination
and task allocation can be generally expressed as the problem
of assign a given set of tasks T = {τ1, . . . , τM} to a set
of acting robots R = {r1, . . . , rN}, or in other words, the
formalization of a function

Φ : R −→ T (1)

which maps the robots into a set of available tasks that gen-
erally is called the task-space. In characterizing this function,
manifold issues need to be addressed, typically depending on
the task to be satisfied, the environment, the context in which
the robots are acting, and most importantly, the characteristics
of the robots itself.

The mapping function Φ has to be expressed by considering
the surrounding world. Generally, the environment needs to be
properly modeled in a suitable representation in order to enable
the robots to take informed decisions. Therefore, in most of
the recent works, that try to solve the problem of of distributed
coordination and task assignment, the world model is usually
taken for granted.

Originally, multi-robot coordination has been studied for
engineering reasons, where multi-robot systems were designed
to improve the effectiveness of a robotic system. In a later
moment, a significant development of this research topic
has stemmed from studies on biological systems or complex
models arising in cognitive science and economics. This large
amount of work has been the subject of multiple survey papers
that provide interesting characterizations of this research area.
For example, Cao et al. [29] propose multiple dimensions
for characterizing multi-robot coordination. Instead, Dudeck et
al. [30] give a classification that is more focused on the com-
munication and computation aspects. Stone and Veloso [31]
present an introduction to the field of Multi-Agent Systems
and MRS, along with a conceptual framework to organize
the possible systems, while the research topics in the MRS
field are discussed by Parker [32]. Finally, Farinelli et al. [33]
classify multiple approaches proposed in literature, specifically
focusing on the coordination aspects of MRS.

Building upon these surveys, in this section we focus
on recent works that have approached the problem of task
allocation in a decentralized fashion. For example, Wicke et
al. [34] have recently proposed an approach to multi-agent task
allocation inspired by bounty hunters and bail bondsmen. In
this approach, while a task remains uncompleted, its bounty
gradually rises, making it more and more desirable to pursue.
Unlike auctions, this model does not assume rationality in
agents bids. An alternative approach has been recently pre-
sented by Johnson et al. [35]. In this work the authors present
a decentralized assignment approach for communicating agents
by means of an asynchronous channel. The authors modify the
Asynchronous Consensus-Based Bundle Algorithm (ACBBA)
in order to take into account more real-time implementa-
tions. More specifically, first a new metric of convergence
for ACBBA is identified and then, the system is enabled to
asynchronously re-plan its task execution.

Okamoto et al. [36] focus instead on a large-scale as-
signment problem. They address the problem of task allo-
cation by enhancing the Distributed Constraint Optimization



(DCOP) [37] approach for large-scale problem, by modifying
the task acceptance rules for each robot. Their solution allows
the robot to exploit the available local knowledge and adapt
their acceptance criteria. DCOP has also been recently consid-
ered by Wu and Jennings [38]. In this work, the authors extend
standard DCOP models to consider uncertain task rewards,
where the outcome of completing a task depends on its current
state, which is randomly drawn from unknown distributions. In
order to do so, the authors propose a decentralized algorithm
that incorporates Max-Sum with iterative constraint generation
to solve the problem. Max-Sum is exploited also by Cerquides
et al. [39]. In this work, the authors consider inter-team coor-
dination in order to achieve a desirable cooperation between
multiple specialized teams. With this approach the authors
show how a team of firefighters and police forces can coor-
dinate more effectively in polynomial time by using Tractable
High Order Potential. Analogously, Corrêa [40] considers the
problem of coordinating a team of robots to form groups of
agents to solve disaster tasks. In this work, the author discusses
an algorithm that creates partitions of agents in a tree-structure
factor graph. Also Pennisi et al. [41] have recently faced
the problem of distributed task assignment to address multi-
robot surveillance. In this work, the authors perform a greedy
task allocation routine based on utility estimation computed
according to Euclidean distances between areas to be covered
and the actual positions of the robots.

Alternatively, a distributed coordination problem can be
seen as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP). In this framework, a team of robots
has the goal of learning the best collective policy in order to
maximize a common reward. For example, Eker et al. [42]
use evolution strategies to generate policies and learn joint
actions for two robots in a grid-world. Matignon et al. [43],
instead, use distributed value function (DVF) to formalize a
Dec-POMDP as several MPDs, one for each robot, which are
locally solved in order to succeed in multi-robot exploration.
Capitan et al. [44] use decentralized POMDP to multi-robot
surveillance and tracking using UAVs. The authors employ
auctions in order to flexibly coordinate the agents’ individual
policies formalized as a POMDPs.

Another commonly used approach for multi-robot coordi-
nation is Dynamic Task Assignment. This standard approach
however is not able to handle unpredictable tasks in dynamic
environments. To tackle this issue, recently Luo et al. [45]
have described an iterative greedy auction algorithm in order to
approximate an optimal task allocation solution. However, the
tasks to be assigned are not known beforehand, but they may be
discovered online. For this reason, the authors run an auction
episode for each arising task, assigning it to the robot with
the maximum payoff. Additionally, to allow a fully decentral-
ized approach, the auctioneer is substituted with a maximum
consensus technique among the entire network of robots. Luo
et al. [46] have subsequently extended their previous work
by proposing an auction-based task allocation algorithm. In
this work, the authors first propose a centralized approach
that is able to compute the best mapping between tasks
and robots, and then a decentralized one which guarantees
provable-suboptimal solutions. In their distributed solution, the
authors locally maximize the objective function for each robot.
One of the key contributions of this paper consists of dropping
the assumption of independence among a given group of tasks,

optimizing them altogether.

Finally, a few years ago Stone et al. [47] have approached
the task assignment problem in a completely different but
still affine perspective. In this work, the authors address the
multi-robot cooperation problem without relying on a priori
protocols. Their final goal consists of building a working team
of robots that only shares the knowledge of the operational
environment. In other words, their goal consists of building
a single agent able to cooperate with other unknown agents
that are not necessarily programmed by the same team. These
other robots might also feature different capabilities and may
also not share the same knowledge of the current state of the
world. Drawing from this initial study, other similar works
have been presented. In particular, Liemhetcharat and Veloso
have represented the synergy among robots as a connected
weighted graph. This graph has been then used to evaluate the
ability of each pair of robots to work together [48]. Instead,
Barret and Stone have adopted pre-learned policies to quickly
react to teammate actions [49].

III. COMPARISON AND CONCLUSION

When coordinating multiple autonomous robots, it is often
necessary to rely onto a distributed system. Specifically, this is
a common choice when the task to be accomplished requires
robustness, scalability and performance. Depending on the
task, the coordination system can significantly change, and
the used approaches may vary accordingly. In the previous
section, we surveyed and highlighted two different aspects
of a Multi-Robot System: World modeling, where the team
of robots are goal-driven and the aim consists of efficiently
reconstructing the surrounding world while perceiving it, and
Task assignment, where the main problem consists of deciding
how to decompose tasks and allocate resources.

As we presented in the previous section, there are three
main issues one has to solve in multi-robot world modeling.
Firstly, the robots must establish relations between pair of
maps obtained from different robots. Some approaches [20],
[21] obtain these relations through direct robot-to-robot mea-
surements, although sometimes this constrains robot move-
ments as their identifiers must be visible to the others. Inter-
robot measurements can also be obtained indirectly by com-
paring the robots local maps which involves solving a data
association problem, as done in [19], [25], [27].

Once the transformations between maps have been ob-
tained, they can be merged into a centralized map which
allows to have a common global vision of the environment as
done in [20], [21], [23]. These systems may require constant
communications between robots or a communication infras-
tructure to connect to a central server. On the other hand, in
distributed approaches [22], [26], [27] robots work with their
own maps and only incorporate information from others, if
they eventually meet.

Conversely, if we consider distributed task allocation ap-
proaches, the key issue is the formalization of the function
mapping a set of robots into a set of tasks. In fact, the
mapping function Φ must take into account the goal of the
team, the tasks that are available to the team of robots and,
most importantly, it has to encode the features and capabilities
of each unit in the team.



Indeed, depending on the robots capabilities the mapping
function changes significantly. For instance, if we consider a
team of equally skilled robots, and the problem to solve is well
formalized, then we can employ DCOP based approaches as
in [36], [38]. In a DCOP formulation each robot contributes to
the optimization of a common objective function and governs
a set of variables (usually one) constituting the objective
function. Obviously, a direct application of a DCOP is the
optimization of a team of robots, but in general it can be
adapted to every decentralized problem solving formulation.

Conversely, if the team of robots has heterogeneous units
with different skills and capabilities, then the mapping function
Φ needs to be reshaped accordingly. In these terms, marked-
based approaches, or more in general distributed task as-
signment (DTA) approaches present promising results. In this
setting, each robot performs a self evaluation with respect to
the available tasks and propose a possible assignment which
maximizes its payoff. For example, these techniques may rely
on auctions [45] or utility estimations [41]. Utility estimation,
for example, represent a possibility of expressing how good
a robot is with respect to a given task. Thus, if there are M
tasks, each robot computes a vector of M dimensions of utility
values, one for each task. According to this formulation, the
evaluation is locally performed by the robot itself, and then,
shared among the entire team. This allows to easily implement
a fully distributed system in which robots heterogeneity is
encrypted into the utility estimations and can be collectively
evaluated.

Multi-robot World Modeling and Distributed Task Alloca-
tion are generally addressed separately. This splits the MRS
problem into two ”easier” parts, however we foresee future
works into complete operational systems where both parts are
integrated would benefit the whole system. For example, the
robots could build a better map of the environment and more
efficiently if, by using some of the above mentioned techniques
for task allocation, the team can decide which area each robot
is going to cover and establish strategic meeting points where
the data association would be more easily solved.

In fact, we could implement complete systems that guaran-
tee reliable performance in every type of multi-robot system.
In this perspective, different approaches are arising where the
robots first perceive the world and update their distributed
model, and then, effectively act in it in order to achieve a given
goal. For example, De Hoog et al. [50] implement a dynamic
task assignment to select the best explorer in a a frontier-based
exploration task. Instead, in [41], the authors select the best
robot to cover a particular area thought utility estimations in
order to succeed in a surveillance task. Similarly, in [51] the
authors use utility functions to select the best task association
depending on the reconstructed world and the current context
of the environment.

To summarize, in this paper we have attempted to highlight
common aspects of the works on multi-robot systems both in
the robotic and AI literature. In particular, we have focussed
on works that deal with the problem of coordinating a team
of autonomous robots that need to perceive the world and act
in it to achieve a common goal. By surveying these works, we
have underlined common aspects of both categories of works,
sketching a general multi-robot system able to carry out such
a task. We hope that this contribution will help stimulating

more works that at the same time try to integrate techniques
for distributed world modeling with approaches for multi-robot
coordination.
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