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Abstract

Robots, in order to properly interact with people and effectively perform the re-
quested tasks, should have a deep and specific knowledge of the environment they
live in. Current capabilities of robotic platforms in understanding the surround-
ing environment and the assigned tasks are limited, despite the recent progress
in robotic perception. Moreover, novel improvements in human-robot interaction
support the view that robots should be regarded as intelligent agents that can re-
quest the help of the user to improve their knowledge and performance.

In this paper, we present a novel approach to semantic mapping. Instead of
requiring our robots to autonomously learn every possible aspect of the environ-
ment, we propose a shift in perspective, allowing non-expert users to shape robot
knowledge through human-robot interaction. Thus, we present a fully operational
prototype system that is able to incrementally and on-line build a rich and spe-
cific representation of the environment. Such a novel representation combines
the metric information needed for navigation tasks with the symbolic information
that conveys meaning to the elements of the environment and the objects therein.
Thanks to such a representation, we are able to exploit multiple AI techniques to
solve spatial referring expressions and support task execution. The proposed ap-
proach has been experimentally validated on different kinds of environments, by
several users, and on multiple robotic platforms.
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1. Introduction

Robots are expected to be the next technological frontier, impacting our soci-
ety in many sectors, including security, industry, agriculture, transportation, and
services. In particular, robots are expected to become consumer products, that
massively enter our homes to be part of our everyday life. This naturally brings
back the view of the robot as an intelligent agent, capable of smoothly interacting
with humans and operating in real life environments, whose features are undoubt-
edly challenging. In addition to the recent developments in robotics, other tech-
nological advancements make it more feasible to address the design of robots as
intelligent agents. Specifically, new sensors allow for more effective approaches to
perception, new devices support multi modal interaction with the user and novel
speech recognition technologies enable the realization of actual conversational
agents.

This notwithstanding, there is still a gap in terms of user expectations and
robot functionality. A key limiting factor is the lack of knowledge and awareness
of the robot about the operational environment and the task to be accomplished.
In other words, the world models that robots embody do not support even simple
forms of common sense knowledge and reasoning. Additionally, in order to sup-
port the implementation of simple commands such as to “go near the fridge” or
“check whether the TV set is on”, state of the art systems typically need a sig-
nificant engineering effort in coding the knowledge about the specific operational
environment. Consequently, it is impractical to scale-up, enabling the robot to
deal with different environments and different requests from the user.

To this end, in this paper we present an approach that allows a robot to incre-
mentally learn the knowledge about the environment, by relying on a rich multi-
modal interaction with the user. We specifically address the problem of acquiring
the knowledge about the environment (i.e., the semantic map) and maintaining it.
Compared with previous work, our approach can be seen as an incremental on-
line semantic mapping, in which a rich and detailed representation of the operative
scenario is built with the help of the user. The resulting integrated representation
enables the robot to perform topological navigation, understanding target loca-
tions and the position of objects in the environment.

The approach described in this paper builds on previous work for off-line con-
struction of semantic maps [1], based on two main components: (i) a component
for Simultaneous Localization And Mapping (SLAM), that provides a metric map
of the environment; (ii) a multi-modal interface that allows the user to point at the
elements of the environment and to assign their semantic role. The novel contri-
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butions of this work are the following:

• The representation of the environment, which is automatically extracted
from the metric map and is labelled through user interaction. On this repre-
sentation different form of symbolic AI techniques can be applied.

• The process of building and updating the representation, which is done in-
crementally during the deployment of a robot through a continuous interac-
tive process;

By exploiting the representation of the environment built through this process,
we are able to support several forms of reasoning, task execution and complex
interactions.

The above listed features have been embedded into a prototype system that
has been extensively used over months to validate the proposed approach, in sub-
stantially different environments, and with multiple users. This robotic system is
a fully functioning prototype able to enter an unknown environment and incre-
mentally create a semantic map that supports the execution of complex tasks in a
partially dynamic environment. A semantic mapping approach similar to the one
presented here could be deployed on robots that are currently entering the market,
such as telepresence robots [2]. In this specific scenario, users could be allowed
to give a tour of their homes or offices to the robot, teaching it about relevant ob-
jects or rooms in the environment, possibly in different moments. The knowledge
acquired through this process could then be used to simplify the teleoperation of
a robot by allowing both the remote and the nearby user to command the robot
using natural language. For example, users could just instruct the robot to reach a
previously learnt room or object, without the need to tele-operate it.

In this paper we focus on the representation, acquisition and use of the robot
knowledge. We refer the reader to previous publications for a more detailed de-
scription of the robotic system and for an overall discussion of the natural lan-
guage interaction [3, 4, 5]. The remainder of the paper is organized as follows.
Section 2 describes the background and provides a suitable context for our work
with respect to the state of the art. Section 3 outlines in detail the aim and the con-
tributions of our work. The representation of the robot’s knowledge is illustrated
in Section 4. Section 5 describes the knowledge acquisition and maintenance,
while the uses of the acquired knowledge in the behaviors of the robot and in the
dialogs with the user are discussed in Section 6. We illustrate the experiments that
we have carried out to validate the proposed approach in Section 7. Conclusions
are drawn in Section 8.
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2. Related Work

Our work mostly relates to the literature on semantic map acquisition and
especially on those approaches that rely on human-robot interaction in natural
language. After the early-day works in semantic mapping [6], all the recent ap-
proaches can be grouped into two main categories, by distinguishing fully au-
tomatic methods from approaches involving a human user to help the robot in
the semantic mapping process. The first category of fully automatic methods, in
which human interaction is not considered at all, can be further divided into three
different sets. A first set of techniques aim at acquiring features of the environment
from laser based metric maps to support labeling and extract high-level informa-
tion. In [7], for example, environmental knowledge is represented by augmenting
a topological map (extracted by means of fuzzy morphological operators) with se-
mantic knowledge using anchoring. A second set of techniques uses classification
and clustering for automatic segmentation and labeling of metric maps. For exam-
ple, the generation of 2D topological maps from metric maps is described in [8]
(using AdaBoost), in [9] (using spectral clustering), and in [10] (using Voronoi
random fields). Finally, a third set of techniques for object recognition and place
categorization uses visual features, such as in [11], or a combination of visual
and range information, provided by an RGBD camera, such as in [12]. Although
significant progress has been made in fully automated semantic mapping [13],
even the most recent approaches still do not scale up in terms of robustness and
generality.

In the second category of approaches for human augmented mapping, the user
role is exploited in grounding symbols into objects that are still autonomously
recognized by the robotic platform. In this case, the human-robot interaction is
generally uni-modal, and typically achieved through speech. In [14] a system to
create conceptual representations of indoor environments is described. A robotic
platform owns an a priori knowledge about spatial concepts and, through them,
builds up an internal representation of the environment acquired through low-level
sensors. The user role throughout the acquisition process is to support the robot
in place labeling. In [15] the authors present a multi-layered semantic mapping
algorithm that combines information about the existence of objects and semantic
properties about the space, such as room size, share, and appearance. These prop-
erties decouple low-level information from high-level room classification. The
user input, whenever provided, is integrated in the system as additional proper-
ties about existing objects. In [16] the authors present a mixed initiative strategy
for robotic learning by interacting with a user in a joint map acquisition process.
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This work however considers only rooms, not enabling the system to embed ob-
jects in the semantic map. The approach proposed in [17] alternatively adopts
human augmented mapping based on a multivariate probabilistic model to asso-
ciate a spatial region to a semantic label. A user guide supports a robot in this
process, by instructing the robot in selecting the labels. Finally, the method pre-
sented in [18] enables robots to efficiently learn human-centric models of their
environment from natural language descriptions.

Few approaches aim at a more advanced form of human-robot collaboration,
where the user actively cooperates with the robot to build a semantic map, not
only for place categorization and labeling, but also for object recognition and po-
sitioning. Such an interaction is more complex and requires natural paradigms
to avoid a tedious effort for non-expert users. For this reason, multi-modal in-
teraction is preferred to naturally deal with different types of information. For
example, the authors in [19] introduce a system to improve the mapping process
by clarification dialogs between human and robot, using natural language. A sim-
ilar construction of the representation is also addressed in [20], where the robot
learns the features of the environment through the use of narrated guided tours,
and it builds both the metrical and topological representations of the environment
during the tour. Spatial and semantic information are then associated to the evolv-
ing situations through “events labeling”, that occur during a tour, and are later
attached to the nodes of a Topological Graph. Finally, the approach in [1] pro-
poses a rich multi-modal interaction, including speech, vision, and the use of a
pointing device (similarly to [21]), enabling for a semantic labeling of environ-
ment landmarks that makes the knowledge about the environment actually usable.
Building upon this work, we propose an incremental on-line semantic mapping
able to acquire a richer and more detailed representation of the environment, as
explained in the next sections.

3. Aim, Assumptions and Contributions of the Work

Semantic Mapping is the process of gathering information about the environ-
ment and creating an abstract representation of it, to support the execution of
complex tasks by robots. In literature, semantic maps have been defined as maps
containing, in addition to spatial information about the environment, labelings of
mapped features to entities of known classes [22]. Formally, Semantic maps can
be defined as a triplet [23]

SM =< R,G, P > (1)
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where:

• R is the global reference system in which all the elements of the semantic
map are expressed;

• G is a set of geometrical elements obtained as raw sensor data. They are
expressed in the reference frame R and describe spatial information in a
mathematical form;

• P is a set of predicates that provide for the semantic interpretation of the
environment.

As outlined in the previous section, semantic maps can be either created in
an automatic process or through the interaction with the user. The process of
semantic mapping can be formally defined as:

fSM :< M,E >→ SM (2)

where M is a given metric map and E = {e1, e2, ..., en} is a set of events that
occur while the robot is exploring the environment. For instance, for automatic
semantic mapping approaches, these events might consist of the recognition of a
particular object in the environment. Instead, for human aided semantic mapping,
such events might consist of different interactions between the robot and the user.
These interactions could be realized through different interfaces, such as natural
language, tablets or other forms of human-robot interaction.

Independently from the type of approach chosen, the systems proposed in liter-
ature are often designed to learn every possible aspect of the environment. More-
over, semantic mapping is seen as a separate and independent process that needs
to be carried out before task execution. We note that robots do not need to gather
a complete knowledge of the environment to be able to execute tasks. Thus, we
propose a shift in perspective, allowing the user to decide what the robot should
and should not know in order to carry out the assigned tasks. Moreover, we note
that not only semantic mapping does not have to be carried out in a single and
independent step, but also that incremental approaches might better suit semantic
mapping techniques that rely on the interaction with the user. Hence, to enable the
user to better aid the robot, we propose an incremental semantic mapping mech-
anism based on a multimodal interaction with the user. Formally, incremental
semantic mapping can be defined as

φISM(t) :< M, e(t), SM(t) >→ SM ′ (3)
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where e(t) is the event occurred at time t, SM(t) is the semantic map built up
to time t, and SM ′ is the new semantic map obtained after applying the function
(i.e., after processing e(t)).

In order to design a system that supports an incremental semantic mapping,
three fundamental questions need to be addressed: i) How to abstractly represent
environmental knowledge; ii) How to build this representation; iii) How to use the
chosen representation to enable task execution. Solutions to these three questions
are present in the literature, but they have been considered as separate compo-
nents. One contribution of this paper is thus a more comprehensive evaluation
of an integrated system that fully implements an incremental semantic mapping
approach. In the rest of this section, we describe the motivations and the choices
made to develop the proposed solutions to the three issues mentioned above, with
respect to previous work in the literature. Instead, in the next sections we provide
implementation details and discuss additional implementation choices.

3.1. Environmental Knowledge Representation
As seen in the previous section, multiple representations have been proposed

to represent environmental knowledge. Our semantic map mostly relates to the
one described by Goerke and Braun [8]. Specifically, we developed a specific
four-layered representation of the environment for the setting considered. In fact,
while considering a mobile base that needs to operate in a human-populated envi-
ronment, we require the robot to navigate to certain locations of the environment.
We hence build a 2D grid based representation, borrowing the idea from video-
games. Indeed, in video-games, the problem of associating logic, symbols and
behaviors to areas of the game-scene has been studied since a long time [24, 25].
However, differently from the top-down approach used in video-games, where the
logic influences the scene, we propose a bottom-up representation, in which the
environment is strictly conditioning the symbolic layer used by the robot. We de-
vice this representation to fully support a rich semantic mapping process. In fact,
instead of limiting our robot to annotate objects and areas on the metric map, we
develop a four-layer representation, introducing an abstract layer that allows for
the use of multiple symbolic AI techniques (such as planning, symbol grounding,
and qualitative spatial reasoning). This representation is presented in Section 4.

3.2. Knowledge Acquisition
Multiple approaches have been proposed in literature to acquire a specific rep-

resentation of the environment, ranging from fully automatic techniques[13] to
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human-robot interfaces based on natural language [26] or tablets [27]. Our se-
mantic mapping process mostly relates to the one proposed by Diosi et. al. [26].
In this work, the user is exploited to label areas visited by the robot through natural
language. By contrast, while aiming at deploying our mobile bases in real human-
populated environments, we devised a multimodal interface to enable non-expert
users to support the robot in the map acquisition process. Specifically, in this
process, the user guides the robot through vocal commands, teaching it about ob-
jects and rooms in the environment with the aid of a laser pointer. Through this
mechanism, any non-expert user is able to support our robots, that are in this way
able to enter an unknown environment and incrementally create a specific and rich
semantic map. Differently from other works discussed in literature, we leverage
human-robot interaction, by allowing the user to decide what aspects of the en-
vironment the robot should learn. In this process, the user takes an active role
by teaching the robot about objects and areas with the aid of a laser pointer. As
outlined in Section 5, this particular interaction has been devised to be intuitively
used by any non-expert users, being them elder or young. Moreover, the interac-
tion with the user enables the system to partially handle the dynamic aspects of
the environment. In fact, we allow the user to update the semantic map by moving
or removing objects in it.

3.3. Knowledge Usage in Common Tasks
In literature, only few works present a fully functioning robotic system able to

acquire a semantic map and use it to carry out tasks assigned by users. One of such
approaches is presented by Zender et. al.[14]. In this work, the authors present
a fully functioning system based on natural language interaction. Differently to
the approach described in their work, we build a richer four-layered representa-
tion that is created incrementally and on-line through human-robot interaction. In
our approach, any non-expert user can teach the robot about objects and rooms
of the environment through a simple yet effective interaction scheme. The rep-
resentation obtained through this process is then used to support the execution of
complex tasks, issued by the user to the robot through natural language. In fact,
we created a fully functional robotic system relying on the semantic map to ac-
complish tasks assigned by different users. Thanks to our representation, we are
able to apply symbolic AI techniques to support the robot during reasoning and
planning operations. In particular, by focussing on tasks that require the robot to
reach certain positions, we show how the robot can ground such commands into
the built semantic map and reason about the objects and rooms described in it.
This particular aspect of our prototype is discussed in Section 6.
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3.4. Assumptions
The proposed solution aims at being general and domain independent. How-

ever, its implementation is based on some assumptions that are discussed in this
subsection. These assumptions have been devised for the specific implementation
that we have developed, but they do not represent actual limitations of the general
approach presented in this work.

We have developed our approach by considering a mobile base that is required
to reach certain locations in the environment as specified by the user through
natural language. Hence, a 2D semantic map of the environment is considered
expressive enough to support task execution. However, the representation could
be extended to 3D to support task execution for other types of robots. More-
over, we have assumed that users know how to interact with the robot through the
developed interface, having been briefly explained before through demonstrative
examples. This assumption has been verified during the system evaluation pro-
cess described in Section 7. During such experiments, users only required a brief
training and a couple of examples to fully learn how to interact with the system.
Additionally, we have assumed that the objects pointed by the user through the
laser pointer are distinguishable by either depth or texture and color. Again, such
an assumption has been verified in the case scenarios analyzed during the evalua-
tion of our prototype. Finally, we have assumed each object in the environment to
have an intrinsic front side. Such a front side is used to establish a common ref-
erence frame for the qualitative spatial references used by the user in the natural
language interactions with the robot, as explained in Section 6. We acknowledge
that the assumption that each object has an intrinsic front side is a strong assump-
tion. This assumption has been made observing how users point to objects while
interacting with robots. Such an assumption is used in the grounding of the quali-
tative spatial references found in the command given by the user to the robot. The
assumption has been made to establish a common reference frame for the vocal
interactions between the human and the robot. A robust object classification and
matching with object models would help dropping this assumption, but such an
issue was not the focus of this paper.

4. Representation of the Robot’s Knowledge

As previously discussed, how to abstractly represent environmental knowl-
edge is the first issue that needs to be addressed while designing an incremental
semantic mapping approach. In our robots, environmental knowledge is divided in
two layers: (i) the world knowledge, which encloses the specific knowledge about
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the environment acquired by the robot; (ii) the domain knowledge, consisting in a
general knowledge about the domain (Figure 1).

Figure 1: Representation of the robot’s knowledge.

It is important to point out that, while the two layers may resemble the exten-
sional (facts) and intentional (general facts, rules and theorems) components of a
classical knowledge base [28], here they are independent of each other. In fact,
the world knowledge may be inconsistent with the domain knowledge (e.g., the
robot may have discovered a fridge in the living room rather than or in addition
to the one in the kitchen, while the domain knowledge may state that “fridges
are in the kitchen”), which is generally used to support the action of the robot,
only when specific world knowledge is not available. For example, the robot is
only able to reach an object (e.g., the fridge in the living room) if it has been
previously discovered; else, if there is no specific knowledge about the position
of the fridge, the system will query a general domain knowledge to find out its
possible location (e.g., the kitchen). To better explain this point, the fact that a
fridge has been found, for example, in the living room and that the robot knows
through human dialog that a particular kitchen has no fridges (in contrast with
the conceptual knowledge base that states that “fridges are located in kitchens”)
does not negatively affect any reasoning of the robot when a fridge is discovered
elsewhere.

In this paper, we will use the term Concept to refer to a set of symbols used in
the conceptual KB and to denote general concepts (i.e., abstraction of objects or
locations). For example, Fridge and Kitchen are concepts in the general domain
knowledge. The term Label will be used, instead, to refer to a set of symbols that
indicate specific instances of objects or locations. For example, fridge1 could
be a label denoting a particular fridge, while kitchen could be a label denoting
a particular kitchen. In the notation used in this paper, concept names will be
capitalized, while labels will have all lower-case letters, typically followed by
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a digit. Finally, the associations between labels and concepts will be denoted
as label 7→ Concept. For example, fridge1 7→ Fridge denotes that the label
fridge1 is an instance of Fridge (i.e., fridge1 is a fridge). In the remaining
part of this section, we will describe in detail how the aforementioned knowledge
structures, pictured in Figure 1, are subdivided.

4.1. Domain Knowledge
In previous work, domain knowledge has typically been characterized as a

conceptual knowledge base, representing a hierarchy of concepts, including their
properties and relations, a priori asserted as representative of any environment.
The conceptual knowledge base usually contains a taxonomy of the concepts in-
volved in the environment tied by an is-a relation, as well as their properties and
relations [7, 29]. These concepts are used in the world knowledge to charac-
terize the specific instances of the environment, as previously explained. In our
representation three top-most classes have been considered: Areas, Structural El-
ements, and Objects. Areas denote places in the environment (corridors, rooms,
etc.), Structural Elements are entities that form the environment and that topo-
logically connect areas (windows, doors, etc.), while Objects are elements in the
environment not related to its structure and located within areas (printers, tables,
etc.). A snapshot of a portion of the conceptual knowledge base used in the ex-
periments is reported in Figure 2.

Figure 2: A fragment of the conceptual knowledge base used in the experiments.

Finally, in the conceptual KB we have included synonyms. It is possible, in
fact, to refer to the same object with different natural language expressions (e.g.,
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referring to a “plug” also with the word “socket”). Moreover, we use the structure
of the taxonomy during the natural language interactions with a user, by looking
at a more specific or more generic concept (e.g., it is possible to refer to a “book
cabinet” with the word “cabinet” and vice versa), as shown in Section 6.

4.2. World Knowledge
A semantic map is typically characterized as a low-level representation of the

map (i.e., a grid), that is labeled with symbols. Such symbols denote, for example,
the area corresponding to a room (e.g., a corridor) or the presence of objects and
structural elements of the environment. Our representation builds on a similar
structure, supporting however a much more detailed description, based on the
interaction and hints provided by the user. Such an environment representation is
called World Knowledge and it is composed by the following elements:

Metric map. The metric map is represented as an occupancy grid generated by
a SLAM method. This map has usually a fine discretization and it is used for
low-level robot tasks, such as localization and navigation. In Figure 3 a metric
map with a resolution of 5 cm generated is shown in the background of the im-
age, where black pixels represent occupied cells and grey pixels resemble empty
spaces.

Semantic Grid Map. The Semantic Grid Map is represented as a discretization
of the environment in cells of variable size. Each cell represents a portion of
a physical area and it is an abstraction of locations that are not distinguishable
from the point of view of robotic high-level behaviors. The Semantic Grid Map
also includes a connectivity relation Connect ⊆ Cell × Cell, that describes the
connectivity between adjacent cells. In Figure 3, the Semantic Grid Map con-
tains multiple cells that are delimited by borders in different colors. Each color
corresponds to an area reported in the legend to the right. Connectivity relations
between cells are not explicitly shown in Figure 3, but they can be derived by
looking at adjacent cells. As we will show in the next sections, this representation
is used for high-level forms of reasoning, such as qualitative spatial reasoning.

Topological Graph. The Topological Graph is a graph whose nodes are loca-
tions associated to cells in the Semantic Grid Map and edges are connections
between these locations. In Figure 3, the Topological Graph is depicted as a graph
connecting oval nodes. Dark-colored nodes correspond to static locations, while
light-colored nodes correspond to variable locations, which are associated to the
main areas of the environment. The static locations denote specific positions that
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are of interest for the robot tasks (e.g., the position to enter in a room), while the
variable locations are used to denote areas, where the instantiation of the position
for a navigation behavior is executed at run-time, depending on the current status
of the robot and on its goals. Since the Topological Graph is used by the robot for
navigation purposes, the edges also contain the specific navigation behavior that
is required for the robot to move from one location to another. In this way, the
Topological Graph is also used to generate appropriate sequences of behaviors to
achieve the robot’s navigation goals. For example, by knowing that there is a door
that must be traversed to go from a point to another, a particular behavior must be
adopted by the robot that will be included in the Topological Graph.

Figure 3: An example of world knowledge.

Finally, our specific representation of the environment is populated with In-
stance signatures. The instance signatures are represented as a data base of
structured data, where each instance has a unique label (l ∈ Label), an associ-
ated concept (C ∈ Concept) such that l 7→ C, and a set of properties expressed
as attribute-value pairs. Additionally, every label is associated to a set of cells
(cells = {c1, c2, ..., cn}) and topological nodes (nodes = {n1, n2, ..., nk}) associ-
ated to them. For example, the green cells labeled with f1 (top-right corner of the
kitchen area) are mapped with the labels {f1, kitchen}, that are associated with
the concepts Fridge and Kitchen, i.e. f1 7→ Fridge and kitchen 7→ Kitchen,
respectively. Thus, the corresponding area is characterized as being occupied by
a fridge and as belonging to the kitchen. Additionally, f1 can have the following
properties: position = < x, y, θ >, color = white, open = false. This particu-
lar four-layered representation has been devised to be easily used with classical
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AI techniques. Specifically, the Topological Graph layer is used to support path-
planning. Instead, the Grid Map is used to support qualitative spatial reasoning
and natural language command grounding.

5. Acquisition of the Robot’s Knowledge

Once we are able to represent environmental knowledge, we need to address
the problem of how to acquire such representation. In our robots, the semantic
map is built by using two different modalities: a inizialization phase and the on-
line incremental extension of the initial knowledge.

The inizialization phase aims at creating an initial representation of the robot’s
knowledge. Such a process is a standard approach used by the majority of the se-
mantic mapping methods found in literature. During this phase we have allowed
the user to specify the objects enclosed in the environment while acquiring the
metric map. The inizialization phase can be divided into two steps: the Metric
Map and Instance Signatures Construction and the Semantic Grid Map and Topo-
logical Graph Generation. During the first step, a 2D metric map is generated
through a graph-based SLAM approach [30, 31] and the initial set of instance
signatures is created. In the second step, a grid-based topological representation,
called Semantic Grid Map, is obtained by using the 2D metric map and a graph,
called Topological Graph, needed by the robot to perform high level behaviors is
built by processing the instance signatures and the Semantic Grid Map.

The on-line modality can be used to enrich the initial knowledge including ad-
ditional objects and additional properties. It is worth noticing that different users
can add knowledge to the system, thus the system has to deal with the possible
addition of multiple tags for the same object. The details about the two acquisition
modalities are given in the following.

5.1. Metric Map and Instance Signatures Construction
In the first step of the inizialization phase the robot is used to navigate the

environment in order to create a 2D metric map and to register the positions of the
different objects of interest. As already described, during the guided tour of the
environment the user can tag a specific object by using a commercial laser pointer
(Figure 4a). While the object is pointed through the laser, the user has to name the
object, so that the Vocal Interface module can register the semantic label that will
be assigned to it [1].

The Dot Detection module is responsible for detecting the laser dot by using
the RGBD data. By exploiting the odometry data to detect when the robot is not
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Figure 4: Object tagging. a) The object is tagged with the laser pointer. b) The color image from
the RGBD sensor is used to locate the laser dot. c) The 3D point cloud is extracted. d) The planes
not containing the laser dot are discarded. e) The dot is used as seed point to segment the tagged
object.

moving, a set of image samples is collected over 3 seconds in order to generate
a background model of the captured scene by means of a multimodal statistical
approach [32]. After 3 seconds, the robot communicates to the user that it is
ready for acquiring the tag and a background subtraction process is carried out
over the current RGB image (see Figure 4b), thus obtaining a foreground mask.
The background subtraction step allows for filtering out possible false positives
(e.g., due to illumination sources coming from windows or ceiling lighting). The
foreground pixels are then converted into the HSV color space to search for the
specific color values of the light dot generated by the laser. To further refine the
results, the depth information is used to discard all the points that are above a
certain height (2.00 meters in our case) or that are too far from the camera (3.00
meters). The output of the Dot Detection module is the image coordinates (i, j)
of the laser dot in the RGB image.

Once the dot is found, the Object Pose Estimation module is responsible for
finding the 2D position x, y and the bearing θ of the tagged element in the metric
map [33]. The object pose in global coordinates (x, y, θ) is calculated by taking
into account the normal corresponding to the surface of the segmented object in
the reference frame of the RGBD sensor and then applying a first transformation
to the reference frame of the robot and a second transformation to the reference
frame of the map (this is given by a standard self-localization module, i.e., ROS-
AMCL).

The coordinates of the laser dot are also used by the Object Segmentation
module that aims at segmenting the pointed object in order to extract its width
(W ), height (H), and depth (D) as well as its color properties. The laser dot is
then projected onto the 3D point cloud of the scene (Figure 4c). All the planes
in the scene are extracted from the 3D point cloud and those that do not contain
the dot are discarded (Figure 4d). The remaining points are analyzed to segment
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the shape of the object of interest by using the laser dot as a seed point for the
expansion and depth discontinuities as stopping criterion (Figure 4e).

The color properties are obtained by analyzing the set of pixels belonging to
the segmented object. In Figure 5 an example of color information extraction is
reported. The set of points in the laser scan corresponding to the tagged object
are detected by extracting the neighbor points around the projection of the laser
dot onto the laser scan (Figure 5b). In order to segment the tagged object, the
point cloud is rotated of an angle equal to π

2
− θ around the axis orthogonal to the

floor. In this way, all the objects are treated as being acquired by the same angle
of view, thus allowing for a normalization of the point cloud of the tagged object.
The final poses of the tagged objects are stored as instance signatures together
with the corresponding properties (color and size).

Figure 5: Extracting color information from a tagged object. a) The RGB image. b) The laser scan
received from the laser range finder. The detected object is highlighted in red. c) The segmented
point cloud. d) The color mask corresponding to the blue color.

5.2. Semantic Grid Map and Topological Graph Generation
While there are tools and methodologies for building metric maps, and, to

some extent, topological graphs, all the knowledge about the environment must
usually be provided to the robot in a suitable format by an expert. This is not sat-
isfactory if symbolic and semantic knowledge has to be acquired incrementally or
if this process has to be performed on top of a metric map. In fact, neither the oc-
cupancy grid, nor the topological graph provide a good representation for adding
semantic knowledge. The occupancy grid, in fact, since it has a fine discretiza-
tion, which is good for a rich description of structural details, does not allow to
be easily translated into a symbolic representation, needed for a high-level form
of spatial reasoning. The topological graph is suitable for representing the con-
nectivity of the environment with respect to a set of symbols associated to it, but
its structure can become very nested and complex, leading to difficulties in phys-
ically locating the areas of interest. Moreover, updating the topological graph can
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become a challenging task, especially if the structure of the environment in the
map can change due to the continuous update of the representation.

Given the above considerations, an intermediate abstraction layer, strictly linked
to the metric map is indeed useful for both acquiring semantic knowledge and en-
abling the robot to build a topological graph on top of the actual structure of the
building, thus keeping in the high-level description a direct connection with the
physical world. Such an abstraction layer can be inserted in a processing chain
from the metric map to the symbolic representation of knowledge about the envi-
ronment, independently both from the mapping methods and from the knowledge
acquisition techniques. The Semantic Grid Map and the Topological Graph are
generated automatically in the second step of the inizialization phase.

Figure 6: Semantic Grid Map and Topological Graph generation. The metric map is enriched with
semantic information to obtain the Semantic Grid Map. The instance signatures and the Semantic
Grid Map are used to create a Topological Graph.

The Semantic Grid Map contains a high-level description about the regions,
structural elements, and objects contained in the environment. It is generated
using both the instance signatures and the 2D metric map. The process to generate
the Semantic Grid Map is carried out by the modules reported in Figure 6 and
briefly described below (for details see [5]).

The Grid Computation module is used to generate a rasterization of the 2D
metric map into a grid-based topological representation called grid map (not to
be confused with the Semantic Grid Map, which is a grid map enriched with
semantic information). The operation is accomplished by applying the Hough
Transform at different resolution levels to identify the lines passing through the
walls. In this way, it is possible to find all the main walls in the map. The cells
of the grid have different size with respect to the amount of relevant features in
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the considered area (e.g., the cells in the corridor are wider then the ones in the
offices). In detail, the cells have been chosen to be variable-sized since we want
the grid to be built on the basis of the walls and to be consistent with the structure
of the environment, which could not be achieved using a fixed-size grid. The
cells have a size between xmin · ymin and 2xmin · 2ymin, where xmin and ymin are
calculated by extending the lines generated through the wall detection to the whole
image and computing the minimum horizontal and vertical distances. Of course,
such a discretization could affect the object localization for small objects, but in
general this error is acceptable. Specifically, we use the center of the grid cell as
a reference for the localization of the objects since it is acceptable both from a
qualitative representation and task execution point of view.

The Object Positioning module is responsible for placing the representations
of the objects and structural elements tagged in the environment into the grid map.
The objects’ pose, shape and size, memorized in the instance signature data base
in the previous step, are used to label the cells in the grid map. The output is an
object map, containing labeled cells representing tagged objects.

The Area Segmentation module is applied to further enrich the object map,
by automatically labeling the different areas of the environment. The object map
is divided into different rooms by using the watershed algorithm [34]. The seg-
mentation algorithm is enhanced by considering the tagged objects and structural
elements previously included in the environment. For example, the knowledge
about the position of doors is used to separate different areas of the environment.
Such knowledge can be gathered both through automatic approaches or through
user interaction. Since the automatic approaches that we tested yielded some false
positives, during our experiments we relied on a completely human-based knowl-
edge acquisition. The output of the area segmentation module is a Semantic Grid
Map, containing labeled cells representing tagged objects and areas of the envi-
ronment.

The Topological Graph Generation module completes the inizialization phase
by creating a Topological Graph. Such a graph embodies the information needed
to the robot for navigating and acting in the environment and it is generated by
exploiting the knowledge contained both in the Semantic Grid Map and in the
instance signatures.

5.3. On-line Knowledge Acquisition
When the inizialization phase is terminated, the robot is ready to incrementally

extend its initial knowledge by adding new objects to the Semantic Grid Map.
Similarly to the previous phase, the on-line acquisition is also achieved by tagging
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objects with the laser pointer (note that we still focus only on static objects). The
system operates as for the previous phase, but at the moment of the insertion in
the knowledge base, the system updates the symbolic representation accordingly:
the Semantic Grid Map and the instance signatures are modified in order to reflect
the new situation generated by the addition of a novel object, as discussed in [4].

However, since the system is used incrementally and possibly multiple users
can interact with it, some difficulties can arise in the maintenance of the knowl-
edge. For example, a user may try to tag an object that is already present in the
knowledge representation or he may want to tag an object that is in a cell already
occupied by another object. In the first case, the system can detect the problem,
since the Semantic Grid Map contains a cell labeled with the same name used by
the current user, and it can avoid to add a duplicate label in the Semantic Grid
Map. An example for the second case can occur if we want to tag a plug that is
located under an already tagged white-board. In this case, since the names of the
objects are different, the system allows to insert more than one label in a single
cell, leaving to an interaction with the user the choice of keeping or deleting the
existing object.

During the on-line acquisition phase, the system can recognize objects already
present in the knowledge representation. Considering again a plug as an example,
if a user points to it in position (x1, y1) and a different plug in position (x2, y2)
has been previously memorized, the system tries to recognize the object without
the explicit grounding by the user.

Figure 7: The system tries to recognize the class of an object if another instance of the same class
has been already memorized by using the SURF features as descriptors.

In Figure 7 two plugs are tagged. Since the Object Segmentation module trans-
forms each segmented object in the same angle of view, the recognition task is
simplified. The two objects are therefore matched by using the SURF features as
descriptors and by exploiting the FLANN algorithm to find the correct correspon-
dences [35].
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6. Robot Behavior using the knowledge base

The semantic map acquired with the previously described method is used for
knowledge maintenance and task execution. These two actions, as well as all the
other behaviors needed by the robot to act in the environment, have been modeled
using the Petri Net Plans (PNP) formalism [36].

6.1. Petri Net Plans
PNPs are particular Petri Nets [37] whose operational semantics is enriched

with the use of conditions, which are verified at run-time by querying an external
Knowledge Base. No restriction is imposed on the knowledge base, which is
supposed to be updated by other modules according to the agent’s perceptions.

PNPs are composed by basic actions that can be combined through a set of
possible operators in order to express complex execution paradigms. The basic
actions of a PNP are ordinary actions (Fig. 8a), which represent a durative action,
and sensing actions (Fig. 8b), which represent procedures whose outcomes de-
pend on one or more conditions to be checked in the knowledge base, similarly to
if-statements.

Figure 8: Ordinary and sensing actions in a Petri Net Plan

These basic actions can be seen as a specific concatenation of places and tran-
sitions of a Petri Net. Each element of an action represents a specific aspect:

• Input places (pi) model the initial configurations of the network before the
action has been executed.

• Execution places (pe) model the configurations during which the action is
executed. These places are also used to create hierarchical plans by calling
a sub-plan while visiting this place.
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• Output places (po) model the final configurations of the network achieved
after the execution of the action.

• Start transitions (ts) model the events that trigger the execution of the action.

• End transitions (te) model the events that trigger the stop of the action. In
a sensing action there is a true (tet) and false (tef ) end transition that fire
depending on the outcome of the query made to the knowledge base.

These basic actions can be composed using a set of possible operators for
single and multi-agent plans. Here we informally introduce two single-agent op-
erators, referring the reader to the original paper [36] for a formal and complete
definition of the available operators:

• Sequence. A sequence is obtained by merging two places of different PNPs.
It can be applied to any place exception made for the execution ones, as
shown in Figure 9.

• Interrupt. Interrupts connect the execution place of an action (or sub-plan)
to a non-execution place of another network. It causes the temporary termi-
nation of the action (or sub-plan) under anomalous conditions, as shown in
Figure 10. Interrupts are often used to repeat a portion of a plan that did not
realize its post-conditions in order to implement while-loops.

Places in the PNP can be used to denote states of execution of the plan, while
transitions represent conditions or events that allow for state changes. PNP sup-
ports a hierarchical representation, thus execution tokens in one PNP can refer
both to atomic actions and to other PNPs (also called sub-PNPs) that can be ex-
ecuted in parallel. Moreover, the presence of markers in a place is used to define
a context and these contexts are then used for taking contextual decisions. For
example, contexts are used for loading the proper grammar at a specific phase of
the plan. Specifically, in our system we have implemented a simple plan that,
based on the input given by the speech component, activates one of the eleven
possible actions (Turn, LookAt, Follow, Memorize, Forget, Update, Home, Go-
ToPlace, GetCloser, TellObjectKnown, RecognizeObject). When such an action
ends or is interrupted, the system waits for another command given by the user. In
the rest of this section, we present two examples of such PNP actions in order to
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Figure 9: The sequence operator

Figure 10: The interrupt operator

show how the knowledge can be acquired and used (see PNP1 for a more detailed
description).

6.2. Knowledge Base Maintenance
First, the knowledge acquired by the robot is used for maintaining the knowl-

edge base. In particular, three operations of memorizing, removing, and better
specifing the objects found in the environment have been implemented in the sys-
tem. Figure 11 shows a simplified PNP used for memorizing the objects located
in the environment through the interaction with the user.

In this plan three Say, one AddObject, one AskForHelp and one KBQuery
actions are used to reach the goal. The Say actions represent a communica-
tion with the user through the text to speech system. AddObject is the action
used to store all the information of the object tagged in the semantic map, while
AskForHelp represents the action responsible of resolving the possible conflicts
generated by the addition of a new object to the semantic map. Finally, KBQuery
is the action that queries the knowledge base of the robot. The conditions used in
this plan are the following:

1http://pnp.dis.uniroma1.it
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Figure 11: Simplified version of the Memorize PNP used in the experiments.

1. DotDetected: the user has pointed to the object that needs to be memo-
rized and the laser pointer has been correctly recognized;

2. UserLabel: the user has uttered the label for the object to be memorized;
3. Yes, No: the user has confirmed or not the label understood by the robot

for the object to be memorized;
4. KB OK, KB Conflict: possible answers obtained from the query posed

to the knowledge base (KB OK: the place/object tagged by the user does not
conflict with anything previously memorized; KB Conflict: the place/object
tagged by the user conflicts with something previously memorized and the
user help is therefore required).

Finally, there are two context places (CCategorize, CConfirm), that are
used to activate contextual behaviors. Specifically, CCategorize and CConfirm
activate special grammars to parse user sentences, representing the label of the ob-
ject tagged and the feedback to the robot confirmation request, respectively. When
a new object is tagged, the knowledge base is queried for other objects located in
the same position of the new element. If one or more objects are found, the sys-
tem tries to resolve the problem by comparing the labels of the new element with
those given to the existing ones. If such a label is found to be a synonym or re-
lated by a more generic/specific relation to any of the existing ones, the system
automatically resolves the conflict by acknowledging the user of the presence of
the existing element and by updating the label attached to the object if the new
label is more specific than the known one. An example of execution of this plan
is given in the following table.
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User “Memorize.”
Robot “I am ready to memorize an object.”
The user points at the object until an auditory feedback is received.
User “This is the book cabinet.”
Robot “I know this is a cabinet. Now I know that this is also a book cabinet.”

The three basic operations (i.e., memorize, remove, and specify) have also
been combined in order to create more complex behaviors. For example, when
the system cannot resolve the conflict, the user is notified that one or more objects
are known to be in the same position of the newly tagged one and she/he is asked
whether the new element should be added or substituted to any of the previous
ones. An example of such an interaction is given in the following table.

User “Memorize.”
Robot “I am ready to memorize an object.”
The user points at the object until an auditory feedback is received.
User “This is the fire extinguisher.”
Robot “I know that a socket is also here. Should I keep it in my memory?”
User “No.”
Robot “I removed the socket and I memorized the fire extinguisher.”

6.3. Task Execution
The second case in which the knowledge acquired by the robot is used is task

execution. In this case, the knowledge is used for executing the task of moving
in front of a specific object by interacting with a user. A simplified version of the
GoToPlace sub-PNP relative to such a behavior is given in Figure 12.

Specifically, the plan uses one GoTo, three KBQuery and two Say actions
to reach the goal state. GoTo is the action used to move the robot to a particular
place, KBQuery queries the knowledge base of the robot, while Say represents
a communication with the user through the text to speech system. The conditions
in this plan are:

1. UserRequest: The user has asked the robot to go to a place/object (the
name of the place is stored in the robot’s memory during the execution of
this plan);

2. KB OK, KB NONE, KB MULTI: Possible answers obtained from the query
posed to the knowledge base (KB OK when the place/object given by the
user is unique in the knowledge base and its position in the environment
is known; KB NONE when there is no place/object with such name in the
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Figure 12: Simplified version of the GoToPlace PNP used in the experiments.

knowledge base; KB MULTI when there are multiple places/objects with
the same name in the knowledge base);

3. UserSpecification ANY, UserSpecification DETAILS: The
user has specified which place/object by either answering that any place/object
is fine or by giving a more detailed description that is the subject of a new
query to the knowledge base.

Finally, there is one context place (CWhichPlace) that is used to activate
contextual behaviors. In particular, such a context place activates a special gram-
mar used to parse user sentences representing a specification of a place or an
object.

The specification of a place or an object can be given either by using spatial
relations or synonyms and more general/specific concepts. While the latter speci-
fications can be implemented by embedding a vocabulary in the robot knowledge
base, for spatial relations a dedicated qualitative spatial reasoner (QSR) has been
devised2. In particular, three vicinity relations (near, next to, and nearest), their
three opposite relations (far, not next to, and furthest) and four orientations (be-
hind, in front, on the right, and on the left) have been implemented. By defining
CLoc and CRef the set of cells belonging to the Semantic Grid Map that include

2Note that spatial relations could be learnt over time [38]. However, since this topic is not
the focus of our paper, we adopted a hand-crafted spatial reasoner to show the usefulness of our
semantic map.
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a portion of the objects Loc and Ref respectively, we say that Loc has a vicinity
relation with Ref if and only if:

d(centroid(CLoc), centroid(CRef )) < t

where d is the euclidean distance, t is a threshold constant, and centroid(x) is a
function that takes a set of cells x in input and returns the coordinates of its cen-
troid in the metric map coordinate system. By specifying a threshold constant for
both the relations near and next to, tnear and tnext respectively, we therefore define
the six distance relations (the nearest attribute is computed by finding the object
that minimizes the above defined distance). In order to define the orientation re-
lations, as in [39], we exploited the “intrinsic front side” of the objects, identified
with the normal of the surface tagged by the user during the learning phase pre-
viously described. Specifically, we have used such a normal to define a forward
orientation, later deriving, by rotating clock-wise, respectively the concept of left,
backwards, and right regions. By defining the general concept of directions, we
adopted the cone-based approach [40] to explicate the four directional relations,
starting from the centroid of the reference object. By defining ARefR the area cor-
responding to a region in the direction R with respect to the reference object Ref
(e.g., Acabinetright is the area on the right of the cabinet), in order for Loc to belong to
that particular area, we require that:

centroid(CLoc) ∈ ARefR

where, again, the centroid(x) is as above defined. Two examples of execution of
this plan are given in the following tables.

User “Go to the socket.”
Robot “There are many sockets in the environment. Which one do you mean?”
User “The one close to the emergency door.”
Robot “OK. I am going to the socket.”

User “Go to the socket.”
Robot “There are many sockets in the environment. Which one do you mean?”
User “Anyone.”
Robot “OK. I am going to the nearest socket.”

In these examples, our qualitative spatial reasoner has been used to correctly
execute the commands. In particular, in the first example, the robot uses the near
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relation to ground the disambiguating command to the socket close the emergency
door. Instead, in the second example, the robot goes to the nearest socket. In fact,
when the user instructs the robot to reach any socket, the system chooses, as a
target, the nearest socket to minimize energy consumption.

When the location to be reached is retrieved from the KB and the user is ac-
knowledged with a feedback sentence similar to the ones described above, the
system checks whether the robot is located inside the same room where the target
is placed. If so, the robot navigates directly to the target without using the Topo-
logical Graph, while if not, the system searches the graph for the shortest path to
reach the entrance of the Area containing the target cell and, from there, it behaves
as in the previous case.

7. Experimental Validation

The main goal of the experiments reported in this section is to show the fea-
sibility, the effectiveness, and the robustness of the proposed approach for on-line
acquisition of knowledge through human interaction. In order to validate our ap-
proach, we have carried out experiments both on single components and on the
whole system. These experiments have been conducted by executing the robot
behaviors described in the previous section, across different settings, including
different robots, several users, and two very different kinds of environments: a
home environment and our department. Multiple videos showing the execution
of these behaviors can be found in the dedicated web page3. In particular, our
approach has been implemented on a mobile base derived from Segway (Figure
13a), on a Videre Design platform (Figure 13b), on a Turtlebot (Figure 13c), and
on a MARRtino, a mobile base built by our students (Figure 13d). The standard
sensor setting of each mobile base includes a laser range finder for localization
and navigation and one (or two) RGBD sensor(s) for the laser dot detection and
the object segmentation. The robots carry two additional components, the robot
software and the speech component, that are run respectively by a laptop placed
on the robot and by a tablet that can be either held by the user or placed on the
robotic platform. The robot software, including both core robotic functionalities
and the system for acquiring and handling the knowledge about the environment,
has been implemented on ROS4. The speech processing is based on the imple-

3www.dis.uniroma1.it/˜gemignani/Articles/LivingWithRobots.html
4http://www.ros.org
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mentation developed through Speaky for Robot5 [3].

Figure 13: Robots on which our system has been deployed. a) Mobile base derived from Segway.
b) Videre Design platform. c) Turtlebot. d) MARRtino, a mobile base built by our students.

7.1. System Component Evaluation
The Semantic Grid Map generation process, the object segmentation module,

and the spatial-reasoner are the three key components of our system. Such com-
ponents have been quantitatively evaluated in order to measure the performance
of our implementation.

Semantic Grid Map Generation. In order to evaluate the Semantic Grid Map
representation, two experiments have been conducted. In the first experiment the
publicly available Radish Data Set6 has been used with the purpose of evaluating,
in terms of compactness of the representation, the effectiveness of the proposed
discretization, when dealing both with regular and irregular indoor environments.
In particular, six 2D metric maps7, obtained from different SLAM methods, have
been processed to extract the Semantic Grid Map on a number of different occu-
pancy grids. In addition, four maps generated by our robots have been processed,
for a total of ten different environments. Qualitative results are shown in Fig-
ure 14. A very good correspondence between the real environment and the struc-
tured information within the Semantic Grid Map is achieved. Even if the Semantic
Grid Map generation process has been developed for dealing with ordinary (reg-
ular) buildings, it provides good results also in environments with irregular edges

5http://labrococo.dis.uniroma1.it/?q=s4r
6http://radish.sourceforge.net/index.php
7The following maps have been used: albert-b-laser, ap hill 07b, ubremen-cartesium, in-

tel lab, belgioioso and a portion of hospital floorplan fort sam houston
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Figure 14: Representation obtained for two different maps from the Radish Data Set. Different
rows refer to different maps.

(e.g., see the last row of Figure 14). Quantitative data about the reduction in terms
of the size of the representation allowed by our approach are reported in Table 1.
The results underline that the Semantic Grid Map representation is, on average,
around 98% more compact than the corresponding bitmap (about two orders of
magnitude, depending on the complexity of the map).

When objects are located in the Semantic Grid Map, errors in their positions
and dimensions are introduced because of the discretization of this map. A second
experiment was thus performed in order to evaluate such errors. To this end, we
considered 3 different categories and 15 instances for each category of object in
our department. To avoid the errors introduced in the perception layer, we mea-
sured the ground truth of objects’ position and size and we evaluated their error
when represented in the Semantic Grid Map. By overlapping the object represen-
tations from the Semantic Grid Map (SGM) onto the metric map (i.e., drawing
the occupied cells on the metric map), we compared their size in terms of pixels
with respect to a ground truth map (GT), thus measuring the error introduced by
the use of the Semantic Grid Map. In detail, we measured the percentage of the
error, with respect to the ground truth value, for the width (W ) and the depth (D)
of each object:

eW =

∣∣WSGM −WGT

∣∣
WGT

eD =

∣∣DSGM −DGT

∣∣
DGT
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Table 1: Comparison between the pixels of each processed metric map and the cells of the corre-
sponding Semantic Grid Map.

Map Pixels Cells Reduction (%)
Belgioioso 768 792 11 600 98.5
Dis-B1 1 080 700 10 290 99.0
Dis-B1-part 501 840 7372 98.5
Dis-Basement 992 785 13 455 98.6
FortAPHill 534 520 7878 98.5
Freiburg 335 248 4794 98.5
HospitalPart 30 000 285 99.0
Intel 336 399 4473 98.6
Scheggia 92 984 1116 98.8
UBremen 831 264 10 962 98.6

Table 2: Comparison of the size of the objects in the Semantic Grid Map with respect to ground
truth values, for 3 categories and 15 instances of objects for each category. The measures express
the mean (µ) and standard deviation (σ) error percentage with respect to ground truth values.

Object Num. Samples µCells ± σ µeW ± σ (%) µeD ± σ (%)
Cabinet 15 3.65 ± 1.29 30±1 23 ± 16
Fire Exting. 15 1.05 ± 0.22 112 ± 25 66 ± 19
Recycle Bin 15 3.80 ± 0.6 64 ± 25 82 ± 21

The results obtained (reported in Table 2) clearly depend on the size of the consid-
ered object and on the granularity of the discretization in the portion of the map
where the object is located. For example, the representation error for a cabinet,
which is big in size and can be easily detected from the metric map, is usually
small. The error in the case of a recycle bin is instead higher, since (usually) 4
cells are required to fully represent such an object. Indeed, even if a single cell rep-
resentation would decrease the error, it would not be suitable for safe navigation.
In the case of the fire extinguisher, the error strictly depends on the granularity of
the grid, since this object almost always requires one single cell to be represented.
In general, even if the error for the object sizes can reach significant values, the
loss of precision is still acceptable from the point of view of task execution, since
after reaching the desired location on the semantic map, an accurate localization
of the objects is performed through perception.
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Figure 15: Three classes of objects have been selected for the quantitative evaluation of the object
segmentation module: fire extinguisher, cabinet, and recycle bin. In the first column the images of
the objects are reported, while the manually obtained ground truth images for the silhouettes of the
objects are shown in the second column. The third column contains the results of the segmentation
process.

Object Segmentation. A quantitative evaluation for the object segmentation pro-
cess has been carried out by considering the same objects used for the Semantic
Grid Map evaluation. In particular, we have evaluated the accuracy of our ap-
proach in segmenting multiple instances of three different classes of objects in
our knowledge base (i.e., fire extinguishers, cabinets, and recycle bins) as shown
in Figure 15.

Table 3 reports the results of the image segmentation process in terms of De-
tection Rate (DR) and False Alarm Rate (FAR). DR and FAR are computed as
follows:

DR =
TP

TP + FN
FAR =

FP

TP + FP

where TP are the true positives, i.e., correctly segmented pixels, FN are the
false negatives, i.e., the number of object points detected as background, and FP
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Table 3: Mean (µ) and standard deviation (σ) of the error for the Object Segmentation module
in terms of Detection Rate (DR) and False Alarm Rate (FAR). We considered, in particular, 3
categories and 15 instances of objects for each category.

Object µDR ± σ (%) µFAR ± σ (%)
Cabinet 86 ± 8 3 ± 1
Fire Exting. 71 ± 6 18 ± 6
Recycle Bin 83 ± 7 27 ± 16

Table 4: Mean (µ) and standard deviation (σ) of the error in extracting the width (W size) of the
tagged objects (15 instances for each category).

Object µerror ± σ (%)
Cabinet 24 ± 9
Fire Exting. 16 ± 6
Recycle Bin 25 ± 15

are the false positives, i.e., the number of background points detected as object
points. Lower values for DR are mainly caused by holes in the depth data, espe-
cially along the borders of the objects. Higher values for FAR are mainly caused
by a slight misalignment between the RGB image and the depth map provided
by the sensor. The highest FAR value are obtained in the case of RecycleBins
since, sometimes, part of a cabinet or a wall alongside the tagged recycle bin is
incorrectly segmented as part of it.

Since the final goal of our framework is to acquire knowledge for generating
an accurate semantic map, we evaluate also the precision of our segmentation
method in extracting the width (W size) of the tagged objects. The results are
reported in Table 4. The error eW is calculated as follows:

eW =

∣∣detectedW −GTW ∣∣
GTW

where detectedW is the width detected by our segmentation algorithm and GTW
is the ground truth width. The analysis of the results suggests that the proposed
approach can recover the W size of the tagged objects with an acceptable error
eW . The higher variance of eW , in the case of RecycleBins, is due to the previously
mentioned segmentation error that sometimes occur. It is worth noticing that,
when this occurs, the system memorizes the tagged object.
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Spatial Reasoning. To demonstrate the improvements that qualitative spatial rea-
soning can determine in grounding commands, as well as the effectiveness of our
approach on a real robot, two different kinds of experiments have been carried
out.

Figure 16: Mean number of grounded commands
with respect to the number of objects known in
the environment, added in a random order.

Table 5: Number of correctly and wrongly
grounded commands with respect to the expec-
tations of the users.

User Correct Wrong
1st 7 3
2nd 8 2
3rd 10 0
4th 6 4
5th 8 2
6th 8 2
7th 10 0
8th 7 3
9th 9 1
10th 8 2
Total 81 19

The purpose of the first experiment was to evaluate the impact of the qual-
itative spatial reasoner presented in Section 6.3 on an agent whose amount of
knowledge continuously grows, as well as the influence of the already available
knowledge on such a reasoning. Such an evaluation has been carried out con-
sidering the number of unambiguous and ambiguous commands (i.e., commands
referring to more than one object with a specific spatial property) grounded by the
agent. Indeed, when full knowledge about the environment is available, ground-
ing ambiguous commands would mostly lead to the execution of an action that
does not match the user expectation, while all the unambiguous commands are
supposed to be correctly grounded. We therefore analyzed first the impact of the
presence or absence of the qualitative spatial reasoner (QSR) and then the impact
of the amount of knowledge available to the agent. In detail, we first asked to 26
students to provide a set of 3 commands containing spatial relations between ob-
jects, by looking at pictures of the test environment. Then, from the 78 acquired
commands, we extracted two types of tasks: 28 ambiguous and 50 unambigu-
ous. The commands were grouped following the definition of spatial relations
explained in Section 6.3. Specifically, if a command grounded multiple instances
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of the same object class, it was considered ambiguous, otherwise unambiguous.
By gradually adding knowledge about the objects inside the knowledge base of
the agent, we therefore measured how many commands were grounded. In partic-
ular, the robot started with an empty knowledge base. At each step, we informed
the robot about a new object in the environment. Then, we instructed the robot
with all the gathered commands and proceeded to add a new object to its knowl-
edge base. We repeated the experiment for both categories of commands, with
or without the qualitative spatial reasoner. Since the curves depend on the order
of the objects inserted in the knowledge base, the experiment has been performed
five times in order to obtain its average trend (Figure 16). In case the QSR was
not present (red curve), only the objects in the environment, whose category has a
unique member, were correctly identified. For example, since we had two cabinets
in the test environment, there was no way of distinguish them without exploiting
spatial relations. By comparing the two curves in the image, it can be noticed that
the presence of the QSR does not greatly affect their trend when a little amount
of knowledge is available, due to the absence of exploitable spatial relations be-
tween objects. On the contrary this is not true when substantial environmental
information is accessible. Note that, when complete knowledge about the rele-
vant elements of the environment is known by the robot, the number of grounded
commands, as expected, is equal to the number of unambiguous phrases (50 com-
mands) present in the adopted set of commands.

The second experiment aimed at understanding the limitations of the proposed
approach. To this end, we measured the agreement between user expectations and
the grounding performed by the robot. In particular, we first produced a Semantic
Grid Map by driving the robot on a tour of the environment and tagging 23 ob-
jects within an office environment, as well as the doors and the functional areas in
it. Then, we asked 10 different non-expert users to assign 10 distinct tasks to the
robot, additionally asking them to evaluate whether the robot correctly grounded
their commands, thus meeting their expectations. The qualitative spatial repre-
sentation of the robot was briefly explained to the users. Moreover, the com-
mands have been directly acquired through a Graphic User Interface, in order to
avoid possible errors due to misunderstandings from the speech recognition sys-
tem. In detail, the users had the possibility to choose the action to be executed
by specifying the located object, the reference object and one of the 10 spatial
relations implemented in our reasoner. Table 5 shows that approximately 80% of
the given commands have been correctly grounded. The remaining 20% of the
wrongly grounded commands were due to two different phenomena: (i) the com-
mand given was ambiguous, requiring other properties, in addition to direction
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and distance, to identify the object. In fact, in the test setting, some commands
could be grounded to multiple objects, given the qualitative spatial model of the
robot. In such cases, the robot could ground the command to a correct object al-
ternative to the target chosen by the user. (ii) the users did not behave coherently
during the interaction with the robot, by varying their concept of vicinity or by
adopting different reference frames. In fact, in such cases, user expectations dis-
agreed with the qualitative spatial model provided to the robot and explained at
the beginning of the experiment.

7.2. Whole-system Evaluation
In this last set of experiments our goal was to evaluate the whole system in

a real environment during a typical task executed by the robot. For this reason
we deployed our robot in an office environment and we asked both expert and
non-expert users to drive the robot around using the vocal interface and to tag the
various objects present in the environment. To test the robustness of our system
in a noisy environment, we carried out a data collection during a public opening
of our department asking 10 visitors, in addition to all of the authors of this paper
(for a total of 16 users), to take part in the following experiment. The robot started
with no knowledge about the objects enclosed in the environment and each user,
after being explained for a minute the commands understood by the robot, had to
drive, using the vocal interface, the mobile platform in front of a desired object
and teach the robot its position and name. Having memorized different objects,
the user had to ask the robot to move in front of them in order to demonstrate that
the learning process had been carried out successfully. In this experiment all the
users have been able to successfully memorize an object.

After collecting the data, we calculated the distance between the position of
the centroid of the learned objects with the one belonging to a ground truth manu-
ally created. The result of such a comparison is shown in Table 6. From the table
it can be noticed that almost 90% of the objects were placed with an error less than
50 cm. The remaining objects were placed instead at a distance between 50 cm
and 1.5 m, due to errors deriving from the object segmentation component, and
the Semantic Grid Map Generator. In fact, under particular light conditions (e.g.,
the camera was facing a bright source of light), the vision component yielded a
significant error for the positions of the laser dot. It can also be noticed that the
precision does not vary between the expert and non-expert users, thus confirming
that this system does not require a specific training to be used. Overall, the evalu-
ation of the performance shows that the system can effectively acquire knowledge
about the environment, allowing for the representation in the semantic map of a
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Table 6: Result obtained from the test performed on the whole system. The position of the tagged
objects is compared with the one obtained from a manually generated ground truth by calculating
the distance between the two points.

Thresholds Average % Experts % Non-Experts %
≤ 0.1m 17.5% 20% 16%
≤ 0.2m 43.3% 37% 47%
≤ 0.3m 48.5% 46% 50%
≤ 0.4m 77.0% 72% 80%
≤ 0.5m 86.5% 94% 82%

wide variety of elements. Finally, the results of the final experiment with the users
show that the approximations that have been introduced in the representation do
not affect the execution of the task, thus providing some evidence of a good bal-
ance between abstraction and accuracy reached in our representation.

8. Conclusions

In this paper we have presented a new approach for acquiring and represent-
ing the knowledge about arbitrary indoor environments. The knowledge about the
environment that is gathered with the help of the user, is turned by the system
into a layered representation (i.e. a semantic map), which allows for high level
interaction with the user. In the development of our representation, we focused
on the acquisition of knowledge about the specific environment, so that the be-
haviors of the robot over time are supported by grounded facts, rather than by
general world knowledge. Additionally, we have shown how human-robot collab-
oration can play a key role, being the robot instructed by a user through a simple
interaction. The resulting semantic map provides a compact and expressive rep-
resentation, which is used to handle dialogs about the objects and locations in
the environment and to ground complex user commands referring to spatial loca-
tions. Such maps can be used, for example, to drive the actions of a remote robot
through speech, operating in a home or office environment. The implemented
system has been tested with four different robots, in different environments and
with many users, showing a good performance over extended periods of time. In
particular, the system has been experimentally evaluated as a whole, as well as in
all its main components. The results of the experiments show that, despite some
approximations in the construction of the representation, the knowledge acquisi-
tion process is robust and easy to be performed also by non-expert users and on
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different robotic platforms.
While the implemented prototype shows the capabilities that can be achieved

through the integration of AI techniques (NLP, KR, spatial reasoning, perception,
etc.), the implementation can be improved in multiple aspects and several research
topics may be addressed. First of all, a better integration with state-of-the-art tech-
niques for object detection and classification, may enable for a more proactive role
of the system in building the map, by matching both acquired models of objects
and general model of object categories. A better integration of the domain knowl-
edge with external resources, possibly including the web, may also be exploited to
support the learning capabilities of the system in grounding the objects of the en-
vironment to new concepts and to their linguistic counterparts. Moreover, we plan
to improve the whole system to address more cognitive issues related to the con-
struction of the semantic map. Among them, the characterization of changes in the
environments by analyzing the evolution of the knowledge base over time and the
ability to properly handle multiple instances of objects in the same category. We
also plan to allow our robot to learn over time the spatial relations between objects
referred by the user to extend its capabilities [38]. Finally, we are considering the
extension of the Semantic Grid Map to 3D, which would bring about a new set of
spatial relations among the objects. This knowledge acquisition approach could
then be extended to support other forms of symbolic representation constructions
from low-level data [41].
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