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Abstract

Robotic systems should have a deep and specific knowl-
edge about the environment they live in to properly in-
teract with people and effectively perform the requested
tasks. To this end, a suitable representation of the en-
vironment is needed, including both metric spatial in-
formation and semantic representations of locations and
objects of interest. In this paper a representation of spa-
tial and environmental knowledge, as well as a method
for reasoning on it are presented. More specifically, the
representation method is designed to properly integrate
metric information about the environment and semantic
information provided by the user, allowing for an effec-
tive knowledge-based reasoning. The result is a quali-
tative high-level representation of the environment that
embodies all the knowledge required by a robot to actu-
ally reason on it and execute complex tasks.

Introduction
Service robotics concerns the use of semi- or fully au-
tonomous systems to perform activities, aiming at achiev-
ing the well-being of humans (International Federation of
Robots 2013). Since the majority of tasks that robots have to
face are inherently complex, human-robot interaction (HRI)
can be exploited to overcome such difficulties. Out of all
the existing HRI interfaces (e.g., haptic or gesture inter-
faces), natural language offers a rich and intuitive mecha-
nism by which human users can easily interact with robotic
platforms, expressing rules and commands in a very concise
way.

However, natural language based interaction presents two
main challenges: 1) Correctly interpreting the commands
given by the users; 2) Grounding such commands. The first
challenge involves the problem of fully understanding the
commands that the robot is asked to perform, while the lat-
ter one derives from the difficulty of univocally assigning a
relation between a physical element and its formal represen-
tation.

The aim of this paper is to describe how an effective envi-
ronmental knowledge representation for command ground-
ing can be automatically built by means of a semantic map.
As underlined by (Galindo et al. 2008), existing methods

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for reasoning on semantic maps suffer of an insufficient ex-
pressivity for the environmental representation. On one end,
a limited amount of knowledge can be learnt by the sys-
tem, while on the other, existing approaches do not fully
exploit the potential that arises from semantic information,
focussing only on the problems of recognizing and locating
objects in a map.

This work is a first step towards building a rich knowl-
edge base that can lead to a better command interpretation
and to an easier and more effective reasoning process. In
particular, we focus on how to obtain a precise and reliable
grounding of the commands given by the user. When pro-
cessing a command, it is crucial to understand both the ac-
tions that the robot is required to accomplish and the argu-
ments related to them. For example, if the command is “go
to the closet”, then the key point is to establish where the
robot has to move to. Indeed, it is possible to understand the
command and to carry out the appropriate actions only if a
suitable representation of the environment is available. The
proposed method for automatically building a semantic map
has been qualitatively evaluated by processing several pub-
licly available metric maps, as well as maps generated by
our robots. A quantitative evaluation of the improving factor
that the knowledge representation allows to obtain is being
carried out by performing several sessions of experiments, in
which different users are asked to interact with our robotic
platform through the use of natural language.

The remainder of this paper is organized as follows. Sec-
tion II discusses the background and the related work. The
representation of the robot’s knowledge is presented in Sec-
tion III, while the method for its construction is described in
Section IV. The experimental evaluation of the approach is
shown in Section V and the conclusions are drawn in the last
section.

Related Work
The literature about environmental knowledge representa-
tion and acquisition, and in particular about acquiring and
representing semantic maps, can be divided into two main
categories, by distinguishing automatic processing from the
so called “human-in-the-loop” approaches, where a user is
asked to help the robot in the acquisition process.

A first set of works attempted a fully automated ap-
proach in order to construct environmental maps, by clas-



sifying functional areas. In the early stages of research in
this field, many methods focused on the extraction of room
attributes. For example, (Fabrizi and Saffiotti 2002) and
(Buschka and Saffiotti 2002) presented a local technique that
uses range information to detect room-like data during nav-
igation, through a virtual sensor. Starting from the idea of
dividing occupancy grid into regions separated by local nar-
rowings, as proposed by (Thrun 1998), they worked on an
algorithm for partitioning the space in an incremental way.
In particular, computing a certain number of parameters for
each region, they produced a local-topological map. Simi-
larly, (Anguelov et al. 2004) focused on doorways detection
and object-based modeling in order to define a probabilistic
model of corridors containing doors and walls. Specifically,
they parametrized each object by its shape, color, and motion
model in order to obtain the distribution over possible obser-
vations of the robot. Moreover, in (Galindo et al. 2005), en-
vironmental knowledge is represented by augmenting with
semantic knowledge a topological map, which is extracted
with fuzzy morphological operators.

A second set of techniques make use of classification
and clustering for the automatic segmentation and labeling
of metric maps. For example, in (Nüchter et al. 2005), en-
vironmental knowledge is extracted by labeling 3D points
through the gradient difference between neighboring points
which are then classified as floor-points, object-points or
ceiling-points. (Mozos, Stachniss, and Burgard 2005) and
(Martinez Mozos et al. 2007), instead, extracted simple ge-
ometric real-valued features from scans, and classified them
through an Adaboost multi-classifier obtained by arranging
several weak binary classifiers in a decision list. A similar
approach has been proposed by (Goerke and Braun 2009),
in which a learning classifier is used to build semantic an-
notated maps from laser range measurements. Various alter-
native approaches have been proposed, based, for example,
on spectral clustering (Brunskill, Kollar, and Roy 2007) or
Voronoi random fields (Friedman, Pasula, and Fox 2007).
Only few works, however, consider the acquisition and clas-
sification of objects.

Recently, techniques for object recognition and place cat-
egorization, based on visual features (Wu, Christenseny, and
Rehg 2009), or a combination of visual and range informa-
tion provided by an RGB-D camera (Mozos et al. 2012) have
been proposed. For example, (Pangercic et al. 2012) investi-
gate the representation and acquisition of Semantic Objects
Maps (SOMs) in kitchen environments, with low-cost RGB-
D sensors by using vision and active manipulation actions
such as opening drawers and doors.

As shown by these works, a significant progress has been
made in fully automated semantic mapping, however, re-
lying on fully automated interpretation of sensor data has
multiple limitations in the knowledge acquisition process.
Indeed, sensor data interpretation often introduces errors or
uncertainties and it is non-trivial to deal with them in an au-
tomatic way.

In order to overcome the above mentioned limitations,
several researchers suggested to use human augmented map-
ping, in which the user actively supports the robot to ac-
quire the required knowledge about the environment. For

example, in (Diosi, Taylor, and Kleeman 2005) an inter-
active SLAM procedure and a watershed segmentation are
employed in order to create a contextual topological map.
While (Zender et al. 2008) describes a system for the cre-
ation of conceptual representations of human-made indoor
environments. In their work, a priori knowledge about spa-
tial concepts is provided to the robotic platform, which pro-
duces an internal representation of the environment acquired
through low-level sensors. The user role, during the acquisi-
tion process, is to support the robot in the activity of place
labeling, while the obtained representation is also used for
human-robot dialogue.

A more general approach to human-robot collaboration
for semantic mapping is taken by (Kruijff et al. 2006), where
clarification dialogues are used to improve the quality of the
adopted representation. Through the use of natural language,
therefore, their system increases the robots robustness when
dealing with uncertainties or incomplete information. More-
over, (Nieto-Granda et al. 2010) adopt human augmented
mapping based on a multivariate probabilistic model to as-
sociate a spatial region to a semantic label. In particular, the
user supports this activity directly teaching the labels to the
robot, which is taken on a tour of the environment. Then,
taking a laser scan measurement and fitting a Gaussian to
the resulting points, the mean and the covariance are stored
in the map along with the label provided by the human. Dur-
ing navigation, the robot computes the Mahalanobis distance
from its position to the mean of each Gaussian and, if not
sufficiently confident its position in a region with a known
label, it prompts the user to input the name of the current
region. (Pronobis and Jensfelt 2012), instead, use heteroge-
neous modalities for a comprehensive multi-layered seman-
tic mapping algorithm, aiming at place categorization and
topological map construction. Their system builds a prob-
abilistic representation that includes information about the
existence of objects and properties of space, such as room
size, shape and appearance. Such a representation is used
in order to estimate room labels. The user input, whenever
provided, is integrated in the system as additional properties
about existing objects. While in the latter described process
the support of the user does not play a central role, (Ran-
delli et al. 2013) propose a rich multi-modal interaction, in-
cluding speech, gesture, and vision. Such an approach en-
ables the system to perform a semantic labeling of the en-
vironment, without many pre-requisites on the features of
the environment itself. However, a suitable representation of
the acquired knowledge into an expressive semantic map is
missing.

In our work, the knowledge acquisition process and the
construction of the semantic map integrates the two ap-
proaches described above: from one side, a user guides the
robot through the environment describing objects and loca-
tions of interest with a multi-modal interaction scheme (this
part is better described in (Randelli et al. 2013)), from the
other side the construction of the knowledge base from data
acquired through the sensors of the robot and from informa-
tion provided by the user is obtained through an automatic
process, that is described in this paper. This integration al-
lows both for acquiring rich knowledge about the environ-



ment and for automatically building a symbolic representa-
tion that is used by the reasoning module of the our system
in order to solve spatial referring expressions.

Symbolic Representation
In this section we describe the representation of the robot’s
knowledge, while the description of how this knowledge is
actually built is provided in the next section.

The representation of the robot’s knowledge is divided
into two layers: the World Knowledge, that represents the
specific knowledge about the environment that the system
acquires and in which the robot is operating, and the Do-
main Knowledge, which is a general knowledge about a cer-
tain type of domains. It is important to point out that, while
the two components may recall the extensional and inten-
sional components of a classical knowledge base (KB), in
this work they are used in a different manner. The World
Knowledge, in fact, may be inconsistent with the Domain
Knowledge, which is used to support the action of the robot
only when specific World Knowledge is not available. For
example, when the user asks the robot to reach a specific
object, if there is no specific knowledge about the position
of the target, the system will refer to the general Domain
Knowledge to find out a possible location, asking the user
to confirm its location. In this way, the exceptions that are
typical of each environment can be explicitly stored in the
World Knowledge (e.g., a printer could be in a restroom),
without considering them in the Domain Knowledge.

In previous work, the Domain Knowledge has typically
been characterized as a conceptual knowledge base repre-
senting a hierarchy of concepts, properties and relations. In
particular, this type of knowledge base is usually represented
as a taxonomy of concepts considered to be representative of
any environment, linked by an is-a relation (Galindo et al.
2005) and (Martı́nez Mozos and Burgard 2006). The term
Concepts, in fact, refers to a set of symbols denoting the
abstraction of a certain number of elements, which can be
used in the World Knowledge to characterize the specific in-
stances of the environment. In the representation used in this
system, three classes have been considered:

1. Areas: Places in the environment (corridors, rooms, etc.);
2. Structural elements: Static entities that form the envi-

ronment and that topologically connect areas (windows,
doors, etc.);

3. Objects: Elements in the environment not related to its
structure and located within areas (printers, tables, etc.).
The knowledge base, therefore, contains environmental

properties of the defined concepts, like size, functionalities
of objects and connections among places. Those, in fact, are
useful to describe the general knowledge about an environ-
ment and to support the robot’s task execution. For example,
in a home environment, the information that a fridge can be
usually found in a kitchen is useful to the robot when per-
forming some tasks related to that object, even if its exact
location is not known. For this reason, symbols like Fridge
and Kitchen1 are part of the general Domain Knowledge

1Concepts are written with the first letter capitalized.

which is commonly used in this system. Also synonyms are
stored in the KB, thus providing to the user the possibility to
refer to the same object with different natural language ex-
pressions with the same meaning. The structure of the tax-
onomy, during interactions, is therefore explored, and more
specific or more generic concepts are extracted, together
with spatial relations useful for the disambiguation of the
targets to be reached by the robot. An important difference
with respect to previous work is the role of such component
in the system: indeed, it is not related to the classification of
spaces and objects, but to the inheritance of properties which
may support both map acquisition and different actions of
the robot in the environment. For example, spatial properties
can be used to build a metric representations of the objects;
functional properties can be used to determine their location
and possible uses (e.g., for the developement of behavioral
plans); physical properties can be used to check precondi-
tions for executing some action.

The process of enriching a low-level representation of the
world is usually realized applying a set of labels to each
location of the map. The term Label is used to refer to a
set of symbols indicating specific instances of objects or
locations. For example, fridge1 is a label denoting a par-
ticular fridge and kitchen1 is a label denoting a partic-
ular kitchen2. In this article, the associations between la-
bels and concepts are denoted as label 7→ Concept (e.g.,
fridge1 7→ Fridge), meaning that the label label is related
to the concept Concept (i.e., fridge1 is a fridge). It is im-
portant to notice, however, that the meaning of the labels is
simply that of a pointer to the concept, rather than an in-
stance of it. In this way, a labeled object can be enriched
with general domain information, but it is not required to be
consistent with the domain KB.

In this work, labels have been used to denote functional
areas, and to represent the presence of structural elements
of the environment or objects. The representation which has
been adopted is built, in particular, with the support for a
much more detailed description as an added value. This goal
is achieved thanks to the exploitation of the hints provided
by the user through human-robot interaction. Intuitively,
such an approach is helpful when the results provided by
state-of-the-art techniques are still too far from the goal and,
therefore, the problem is still challenging (e.g., classifying a
chair from images). Instructing the system to recognize the
specific instances of chairs that the user has in his/her home,
indeed, is a practical and effective solution.

In detail, looking for a rich representation, the represen-
tation formalism of the World Knowledge has been struc-
tured in four different knowledge structures. The first struc-
ture is the Metric Map, which is represented as an occupancy
grid generated by a SLAM method. This map has usually
a fine discretization (e.g., 5 cm) and is used for low-level
robot tasks, such as localization and navigation. The sec-
ond representation are Instance Signatures, which are rep-
resented as a data base of structured data, where each in-
stance has a unique label (l ∈ Label), an associated con-

2In this article labels are denoted with all lowercase letters, typ-
ically followed by a digit.



Figure 1: Example of World Knowledge.

cept (C ∈ Concept) such that l 7→ C, and a set of prop-
erties (including, for example, the position in the environ-
ment) expressed as attribute-value pairs. The third repre-
sentation is the Cell Map, represented as a discretization
of the environment in cells of variable size. Each cell rep-
resents a portion of a physical area and is an abstraction
of locations that are not distinguishable from the point of
view of robot high-level behaviors. The Cell Map also in-
cludes a function f : Cell → 2Label, that maps each cell
to a set of labels associated to concepts in the conceptual
KB of the Domain Knowledge, and a connectivity relation
Connect ⊆ Cell × Cell, that describes the connectivity
between adjacent cells. The fourth and final structure is the
Topological Graph, which is a graph where nodes are lo-
cations associated to cells in the Cell Map and edges are
connections between these locations. Locations are distin-
guished in two types: static and dynamic. For the static loca-
tions, the corresponding positions (i.e., the correspondences
with the metric map) are fixed, while in the dynamic loca-
tions, the corresponding positions are variable within a given
area of the environment. Since the Topological Graph is used
by the robot for navigation purposes, the edges also contains
the specific navigation behavior that is required for the robot
to move from one location to another.

Figure 1 shows a graphical representation of the World
Knowledge as described above. The Metric Map, generated
by the SLAM method with a resolution of 5cm, is shown
as background of the image, where black pixels represent
occupied cells. Every object and location reported in the
figure has an entry in the data base of instance signatures.
In particular, each instance is determined by a unique la-
bel representing an entity within the mapped environment,
(e.g., fridge1), the corresponding concept according to the
conceptual KB (e.g., f1 7→ Fridge), and a set of proper-
ties (e.g., position = < x, y, θ >, color = white, open =
false, ...). The Cell Map, obtained with the methodologies
described in the next section, is shown in the same image:
cells are delimited by solid borders while colors and text in
the cell specify the labels associated to each cell. The labels
refer to a typical area of a home (kitchen, living room, bath-
room, bedroom, etc.) and to typical objects (tables, chairs,
heaters, doors, etc.), while each cell can c more than one la-
bel, thus representing that the same area can be associated

with more concepts. For example, the green cells labeled
with f1 (top-right corner of the kitchen area) are mapped
to the labels {f1, kitchen1}, respectively associated with
the concepts Fridge and Kitchen, i.e. f1 7→ Fridge and
kitchen1 7→ Kitchen. Thus, the corresponding area is
characterized as being occupied by a fridge and as belonging
to the kitchen. Connectivity relations can be derived by ad-
jacent cells. Finally, the Topological Graph, is shown in the
figure as a graph connecting oval nodes: dark nodes are static
locations, while light nodes are dynamic locations, that are
associated to the main areas (labels) of the environment. The
static locations denote specific positions that are of interest
for the robot tasks (e.g., the position to enter in a room),
while the dynamic locations are used to denote areas, where
instantiation of the position (i.e. the mapping to the metric
map) for a navigation behavior is executed at run-time, de-
pending on the current status of the robot and on its goals.

Semantic Map Building and Reasoning
The building process of the proposed spatial and environ-
mental knowledge representation is divided into two phases.
The first step automatically generates a Grid Map, which
is a discretization of the input 2D Metric Map. The out-
put of such procedure, is later processed to produce the Cell
Map and the Topological Graph, on which reasoning is per-
formed.

Automatic Building of the Grid Map
The Grid Map represents a suitable discretization of the en-
vironment, enabling the system to later associate a position
in the real world (i.e., a portion of the Metric Map) to a
particular set of labels (i.e., entries of the instance signature
database), thus realizing an effective qualitative representa-
tion of the environment. In order to produce such an abstrac-
tion, first the algorithm shown in Algorithm 1 is applied, tak-
ing as input the Metric Map and outputting a grid layer that
reflects the structure of the environment. Indeed, each cell of
the grid represents a portion of a physical area of the envi-
ronment and, from a functional point of view of the robot’s
high-level behaviors, it is an abstraction of locations that are
not distinguishable. Since the system is focused on knowl-
edge representation for indoor environments, the production
of the grid relies on the extraction of the lines correspond-
ing to the walls. Those are highly informative, being com-
monly used for the separation of different functional areas
and usually providing, from a top-view, a regular structure
to the building. Indeed, walls can usually be represented as
straight horizontal or vertical lines, thus describing the map
through the use of simple elements. However, even consid-
ering those regular patterns, the lines corresponding to the
walls cannot be extrapolated directly looking at the metric
map. In fact, three problems arise when considering the oc-
cupancy grid in a straightforward manner: (i) noise, due to
positions occupied by humans moving in the environment
during the map acquisition or by very small objects, such as
table or chair legs; (ii) incomplete laser-scans, which com-
promise the regular structure of the building (e.g., caused by
closed doors); (iii) big objects (e.g., a closet), at the border



Algorithm 1: Pseudocode for the Grid Map Building
Data: G: grid lines set, Q: processing queue,W: wall

lines set, D: detected lines set

Input: map: metric map

Output: G
1 G ← ∅;
2 Q← ∅;
3 W ← ∅;
4 D ← ∅;
5 edge map← CannyEdgeDet(metric map, 1, 30);
6 threshold← max threshold;

7 while threshold > min threshold do
8 min distance = max( 100

threshold , 5);
9 D ← HoughTransform(map, distance resolution

10 = 2, angle resolution = π/2, threshold);

11 SelectParallelLinesWithDist(min distance,W , D);

12 extendLines(W);
13 Q ← SelectPairOfParallelAndConsecutiveLines(W);
14 while Q 6= ∅ do
15 < first line, second line >← last element(Q);
16 if areVertical(first line, second line) then
17 max dist← xmin;
18 else
19 max dist← ymin;

20 val← b|dist(first line)− dist(second line)|
max dist

c;
21 if val > 2 then

22 dist2← dist(first line) + dist(second line)
2

;

23 new line← line(dist2,angle(first line));
24 G ← new line;
25 Q←< first line, new line >;
26 Q←< new line, second line >;

or within the building, which produce occupied locations in
the metric map.

In order to reduce the noise and effectively detect the
edges of the building a pre-processing step is required,
where the Canny Edge Detector is applied (line 5). The de-
termination of the threshold values has been realized through
a continuous, multi-map tuning procedure, considering a
trade-off between overall performance and noise reduction.
In detail, these values have been selected to be 1 for the
lower threshold and 30 for the upper one, obtaining a low re-
duction of the noise which, however, ensures that good lines
are never discarded from the map.

Recognizing walls requires an additional step to resolve
two problems: noise and incomplete scans in the metric map.
The common sense heuristic behind wall detection that has
been used in this work is that of considering, in a first mo-
ment, only long and continuous lines. Such lines are detected
through the use of the Hough Transform (line 10). Further-

more, due to the regular structure which usually character-
izes our buildings, only horizontal and vertical lines are con-
sidered as candidates in this process. Then, gradually reduc-
ing the threshold value and, consequently, the length con-
straints (line 7), all the other lines are accepted only if their
distance from the previously acquired lines is greater than
a particular value; such value is determined adaptively as a
function of the accumulator threshold. In this way, a big por-
tion of false-positives corresponding to irregularities in the
laser scans and to noise are discarded, being evaluated in the
last cycles of execution of the algorithm, when almost all the
walls have been already detected.

Having automatically detected the walls of the metric
map, the Grid Map can be computed. In order to achieve
this result, two steps are required. First of all, the lines gen-
erated through the wall detection are extended to the whole
image (line 12), by computing the minimum horizontal and
vertical distances (xmin, ymin). Then, considering each pair
of parallel lines, a new one is inserted between them (lines
21-26) only if their distance is at least twice xmin or ymin,
depending on their angle. This adaptive procedure, creates
a grid whose cells have a size between xmin · ymin and
2xmin ·2ymin. The obtained discretization provides, without
any loss of information, a qualitative representation that is
consistent both with the metric and symbolic layers. On one
hand, the grid is built on the basis of the walls and, therefore,
it is consistent with the structure of the environment; on the
other hand, the granularity is high enough to provide to the
robot the basis for a full symbolic and semantic representa-
tion of the building.

Cell Map and Topological Graph
The Cell Map is the linking layer between metric and sym-
bolic information, in which each label of the Instance Sig-
nature Data Base is associated to a cell of the previously
described Grid Map. This abstraction level is represented by
a matrix, in which each element of the data structure repre-
sents a cell of the grid map.

The cell map abstraction endows the robot with the ca-
pability to acquire the environmental and spatial knowledge
needed to effectively perform tasks. In particular, the fol-
lowing knowledge categories has been selected to aid the
robot in performing its tasks: (i) Areas, represented by a
string with the tag of the functional area; (ii) Objects, de-
fined with a vector containing the tag of each object located
in the cell; (iii) Doors, described by a vector of boolean val-
ues representing the presence of a door between that cell
and a surrounding one; (iv) Properties, expressed by a vec-
tor containing an list of properties for each tagged object.

On the basis of such knowledge, the environment is seg-
mented in different functional areas. In particular, all the
cells of the grid within the building are assigned to an area-
label, while the external elements are considered to be out
of any functional area. This task is performed through the
creation of a Room Map on the basis of the contours ex-
tracted from the metric map, together with the off-line ac-
quired knowledge about areas and doors.

The segmentation process is based on a simple heuris-
tic: each room is distinguished from the others thanks to,



Figure 2: Sequential building steps for achieving area seg-
mentation of the environment.

at least, a door. Therefore, evaluating all the acquired tags, a
set of lines of appropriate size, corresponding to the doors,
is added to the detected contours of the metric map, closing
each functional area. Each area-tag is, then, used as a seed
for a Watershed-based region growing algorithm. Finally,
the opening morphological operator (which is an erosion fol-
lowed by dilation) is applied to the obtained room map. Each
room can then be extracted applying a color based segmen-
tation starting from the tag of the desired area. The results
of the steps described so far in this section are depicted in
Figure 2.

The other two categories of knowledge (i.e., objects and
their properties) are acquired on-line through human-robot
interaction. For such purpose, a specific multi-modal inter-
action has been devised, where the user is asked to point
objects in the environment through the aid of a commercial
laser pointer, while uttering their name. The properties are
later extracted by analyzing the visual perceptions of the
robots and by querying the Domain Knowledge. Since ob-
jects and their properties are key components to operate in
the environment, an intermediate layer of abstraction is re-
quired between such tagging procedure and the integration
of the off-line knowledge stored. For such reason, a module
devoted to the memorization and processing of the objects
and their properties has been developed.

The object handler is responsible for the positioning and
computation of the vertices corresponding, in the map, to
the tagged elements. Subsequently, all the cells of the grid
included between those corresponding to the vertices are as-
signed to the label of the acquired element. Finally, in order
to fully reproduce the object in the cell map on a qualitative
level, each label is enriched with the properties memorized
by the object handler. In this way, the robot can perform rea-
soning and disambiguate between objects of the same type,
in order to interact both with the environment and the user.

The final knowledge representation that is built is the
Topological Graph. A dedicated module has been developed
to construct such representation needed for navigating and
acting in the environment. Thus, for each room mapped in
the cell map, a dynamic node is created while, for each door-
way that connects such a room to another, a static node is
created with its fixed position set in front of the considered
door. Finally, each static node is connected to the dynamic
node of the room it belongs to and to the static node that
represents the location in front of the other side of its related

door. The construction of the topological graph highlights
a twofold aspect of our system: both the knowledge pro-
vided through user interaction and a-priori high-level knowl-
edge contribute to refine the overall mapping process. For a
graphical representation of the final result obtained with this
procedure, we refer to Figure 1.

Reasoning on the Semantic Map
Given the various kinds of knowledge built in the Semantic
Map, various forms of reasoning can be performed. To this
end, all the knowledge included in the Cell Map and in the
Topological Graph is automatically translated to Prolog as-
sertion predicates. In particular, each cell of the cell map is
represented with a predicate cellIsPartOf(XCoord,
YCoord, AreaTag) and each object is represented
with the two predicates object(Id, XCoord,
YCoord, Properties) and Type(Id, Type).
For example, the knowledge of a white plug located
in the cell with grid map coordinates 45, 67 belonging
to the corridor area will be represented with the three
predicates cellIsPartOf(45, 67, corridor),
object(plug1, 45, 67, color-white) and
objectType(plug1, plug). The knowledge stored
in the topological graph is instead represented as an acyclic
graph in prolog with the predicates dynamicNode(Id,
XCoord, YCoord), staticNode(Id, XCoord,
YCoord) and arc(Id1, Id2), respectively for the
dynamic nodes, static nodes and arcs of the graph. Hav-
ing translated in Prolog all the knowledge stored in the
representation built with the previously described method,
performing certain kind of inference on it becomes straight
forward. In particular, a module for the resolution of spatial
relation references has been written in Prolog. In this
module, one predicate for each of the relations next to,
nearest, near, in, left of, right of, belonging to, in front of
and into has been written for effectively resolving such
references by exploiting the connectivity relations between
cells. Moreover, inheritance of properties based on the
domain ontology, as well as the possibility of searching for
objects that specify a given property (e.g., a specific color)
have also been implemented.

Experimental Validation
A first experimental validation was carried out in order to
show the feasibility, the effectiveness, and the robustness
of the proposed representation. Several experiments were
therefore conducted by using the publicly available Radish
Data Set3. Specifically, six 2D metric maps4, obtained from
different SLAM methods, have been processed in order to
validate the area segmentation approach on a number of dif-
ferent occupancy grids. In addition, four maps generated by
our robots have been processed, obtaining a total of ten com-
pletely different environments. Since only the environments

3http://radish.sourceforge.net/index.php
4The algorithm was applied to the following maps: albert-b-

laser, ap hill 07b, ubremen-cartesium, intel lab, belgioioso and a
portion of hospital floorplan fort sam houston



Figure 3: 2D metric maps (top images) and results obtained by applying the area segmentation method (bottom images).

represented in the maps produced by our robots were acces-
sible, only such maps have been augmented with the knowl-
edge about objects, acquired on-line through a specific de-
veloped human-robot interaction.

Qualitative results obtained by applying our automatic
area segmentation algorithm are shown in Figure 3, where
both the initial input metric maps and the final segmented
maps are depicted. For all the considered environments, our
representation allows to correctly distinguish between dif-
ferent functional areas, as well as doors. It can be observed
that a very good correspondence can be obtained between
the real environment and the symbolic representation result-
ing from the application of our algorithm. Finally, it is worth
noticing that, even if the system has been developed for ordi-
nary buildings, it can be applied, without loss of generality,
to environments with irregular edges, as it can be seen in the
central map shown.

After evaluating the method for building the KB, we are
currently addressing the improvement of the performance of
the robot in the interaction with the user. To this end, we are
carrying out two different quantitative sets of experiments
in order to measure: 1) The time and the number of interac-
tions needed by the robot to disambiguate a particular target,
keeping constant its knowledge; 2) The effectiveness of the
system with respect to different amount of knowledge avail-
able to the robot. The setup for the evaluation of these two
experimental settings is the following. A set of commands S
has been collected through a web interface by asking non-
expert users to provide directions to move the robot in front
of a target, by exploiting spatial relations between objects
present in the scenes. Then, the robot is located in a random
position of the environment and it is told, through natural
language interaction with multiple users, to reach one of the
targets in the environment that have been pointed out by the
non-expert volunteers.

The first set of experiments consists in comparing the pro-
posed approach with a basic version of the system (Bas-
tianelli et al. 2013), used as a baseline. A rich knowledge

about the environment (including the 2D metric map, as well
as all the objects of interest in the environment) is made
available to the robot. In the basic version the robot can un-
derstand a particular referred target only if its specific nat-
ural language tag is used by the user. For example, given
the command “go to the closet” the robot moves to the
specified target only if “closet” is in the knowledge base.
Furthermore, if multiple instances of “closet” are present
in the knowledge base the robot, when ordered to reach a
generic closet, moves in front of the first temporally tagged
one, without engaging in a clarifying dialog with the user. In
the current system, instead, synonyms, generalizations, and
specifications of objects, as well as multiple spatial relations
can be exploited to refer to targets and to disambiguate be-
tween objects, that have been tagged with the same label,
trough clarifying dialogs.

The second set of quantitative experiments aims instead
at measuring the effectiveness of the system with respect to
different amount of knowledge available to the robot. The
same setup of the first set of experiments is used, given the
set of commands S to the robot. This time, the number of
known objects by the robotic system is gradually varied.

Visual evidence of our experiments as well as all the maps
processed by our automatic segmentation algorithm are
available at www.dis.uniroma1.it/˜gemignani/
Articles/ResSemMaps.html.

Conclusion
In this paper we have presented a novel method for build-
ing an effective representation of the environment. By tak-
ing as input a metric map produced by a SLAM algorithm
and a set of area tags, we have shown how to represent the
environmental and spatial knowledge through the automatic
construction of a Cell Map and a Topological Graph. Ex-
ploiting these two knowledge representations the resolution
of spatial reference has been addressed.

In order to test the proposed approach, such an automatic
method has been applied to ten different maps, both down-



loaded from the internet and created from scratch. The de-
veloped algorithms have also been embedded in a more com-
plex system that has been installed on two different robots
able to interact with multiple users. The performed experi-
ments have underlined the effectiveness of the proposed ap-
proach, by testing it in two very different kind of environ-
ments.

For future works, a number of additional features need to
be addressed. In particular, we are investigating the issues
that arise during the update and maintenance of the knowl-
edge base, when considering dynamic objects that change
location.
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