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Abstract. The key issue investigated in the field of Multi-Robot Sys-
tems (MRS) is the problem of coordinating multiple robots in a common
environment. In tackling this issue, problems concerning the capabilities
of multiple heterogeneous robots and their environmental constraints
need to be faced. In this paper, we introduce a novel approach for coor-
dinating a team of robots. The key contribution of the proposed method
consists in exploiting the rules governing the scenario by identifying and
using “contexts”. The robots actions and perceptions are specialized to
the current context to enhance both single and collective behaviors. The
presented approach has been largely validated in a RoboCup scenario.
In particular, we adopt a soccer environment as a testing ground for our
algorithm. We evaluate our method in several testing sessions on a simu-
lator representing a virtual model of a soccer field. The obtained results
show a substantial improvement of the team adopting our algorithm.

1 Introduction

In recent years, researchers managed to develop intelligent robots for a wide
variety of environments outside research labs. Nowadays, robotic deployment
reaches a broad range of fields, finding several applications such as in human-
dangerous environment explorations, surveillance, or health care assistance. In
such environments, often multiple robots are required to cooperate to achieve a
higher effectiveness or carry out tasks that otherwise could not be completed.

In fact, Multi-Robot Systems (MRSs) present many advantages with respect
to single robot systems. A MRS is to be considered more robust, with respect
to system failures; scalable, depending on the environment specification and
task requirements; and more efficient in performing a given task. Multi-Robot
Systems have been widely studied in the framework of RoboCup competitions.

The purpose of this work is to present new approaches and methodologies
to coordinate multiple autonomous robots and to guarantee their effective be-
haviors. Specifically, we develop our work in the soccer RoboCup scenario where
a team of robots is required to coordinate to effectively play a soccer game. In
this scenario, we present an algorithm that exploits the high level information of
occurring situations to obtain a specific behavior in response of multiple environ-
mental stimuli. The aim of this work is to provide a high level of knowledge about
the current state of the world, allowing a team of robots to have a more effective
way of perceiving the environment and the entities in it. The key contribution
of this paper is an approach for modeling the context features of a particular
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environment and an algorithm for integrating different coordination techniques
for a team of robots. The approach has been deployed on several simulated and
real robots, including a team of humanoid NAOs. On these robots, we carried
out multiple experiments to evaluate the effectiveness of our contribution.

In the remainder of the paper, we first present an overview of related work,
focusing on past research on multi-robot coordination. Next, we describe our
approach to coordination highlighting all of our contributions thoroughly. Then,
we present an application of the approach to the case of a team of humanoid
robots in a soccer scenario. This setting is then used to quantitatively evaluate
the proposed approach. Finally, we conclude with a discussion of our contribution
and remarks on future work.

2 Related Work

The coordination of multiple robots has been broadly studied during the last
few years, considering multiple scenarios and heterogeneous agents that need to
operate in a specific environment. In particular this problem has been broadly
studied in the RoboCup soccer community where a team of robots needs to
autonomously play a soccer game against another robotic team.

One of the first attempts to coordinate a team of heterogeneous robots was
proposed by a joint project of seven different Italian universities. The ART-
Azzurra-99 Team [6], later extended in [3], developed a coordination system
able to efficiently coordinate heterogeneous agents in a team. Their approach
relied on a task assignment technique. The algorithm automatically distributes
tasks that the team need to accomplish, based on auction techniques.

An alternative algorithm is given in [2] where an asynchronous distributed
system for task allocation which either relies on the perception of each robot or
on a token passing approach in order to allocate the robots within the team.

Lou et al. [4] propose an improved algorithm for task allocation based on an
auction system. They divide the set of possible tasks in subgroups and assign a
task to each robot without violating precedence constraints among tasks.

Wiegel et al. in [9] propose a task allocation for the soccer middle-size league1

based on utility estimations. First, they define the set of preferred poses for the
team depending on the current situation, and then compute the utility values
with respect to generate set of reference poses.

More recently, MacAlpine et al. proposed a more advanced form of robot
coordination [5]. In this article, the authors introduce a formation system algo-
rithm that is exploited within the 3D simulation league. The algorithm computes
a global world model that is shared between the agents and is locally evaluated.
After each evaluation each robot broadcasts the obtained result. The team is
split in an offensive and in a defensive group and the role of each member is
assigned depending on the ball position and the distance from specific positions.

Finally, additional solutions to the heterogeneous robot coordination chal-
lenge were proposed in [1, 7, 8]. These solutions respectively rely on an estima-
tion of the world-state, an estimation of a mapping function between robots and
tasks or between robots and roles. In these works the authors employ generic

1 http://www.robocup.org/robocup-soccer/middle-size/
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world-state evaluations [1], specific world rules [7] or utility estimation functions
and artificial potential fields to position the robots within the environment [8].

Considering the analyzed approaches, we notice that they focus either on
sharing encoded information among the team (local estimation) or on recon-
structing a suitable interpretation of the world with respect to each single robot
(distributed world knowledge). Conversely, our method focuses on integrating
such approaches according to the environment model. In fact, we propose a co-
ordination algorithm, based on both a distributed world knowledge and task-role
assignments, as described in the next section.

3 Approach

Our approach relies upon two well known methods for coordinating a team of
robots: distributed task assignment and distributed world modeling. In order to
coordinate a team, distributed task assignment relies on the exchange between
robots of meaningful task-related values. Generally, such task-related values are
utility estimations with respect to a given task. Conversely, distributed world
modeling exploits the direct exchange between robots of their internal world
representation. The proposed approach aims at combining the robustness of the
two approaches. In the rest of this section, we describe the two main components
on which our approach relies upon, namely the Coordination System and the
Context System.

3.1 Coordination System

The coordination system is in charge of generating a suitable mapping function
between the set of acting robots R and the set of tasks T. We conceptually sep-
arate the coordination system in two main steps. First, we update a distributed
world model in accordance with the events occurring during the game. Then, we
exploit the generated world model to compute utility estimations that are used
to assign tasks among the robots.

Distributed World Modeling The Distributed World Model (DWM) is de-
fined as a dynamic global world knowledge about the current state of the envi-
ronment and status of the task. The DWM is formalized by considering a set of
partial models, each of which is a local representation of the world state for the
i-th robot. Thus, given a team of robots R = {r1, r2, ..., rn}, a distributed world
model DWM is defined as the knowledge of the world reconstructed from a set
of partial models LM = {LM1, LM2, ..., LMn}. Formally, if for each robot ri we
define LMi(t) as the local model of the robot ri at a particular time t, then we
can define the distributed world model of the team as

DWM (t) = f(LM, t) (1)

where f is a reconstruction function generating the distributed world model con-
sidering the partial models of each individual agent. The reconstruction function
needs to be specified depending on the environment constraints and task speci-
fication. However, exchanging local models has an high computational cost and
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it is time consuming. Moreover, it assumes a reliable network condition which is
hardly verified in real applications.

To overcome this issue, we design an event-based system which allows the
robots to infer the local model for the i-th robot at time t by evaluating LMi(t−1)
and the occurring events. Hence, we define the model update function ψ(·) which
takes as input environment dependent events E and an estimation of the previous
local models LM(t− 1), returning the updated local models LM(t):

LM(t) = ψ(E(t− 1), LM(t− 1)) (2)

where E(t− 1) are the events occurred at t-1.
Accordingly, we reformulate the reconstruction function as:

DWM (t) = f(LM(t), t) (3)

Task Allocation Depending on the status of the global world model DWM ,
we adapt the utility function of the team to maximize the performance with
respect to the common goal. The key idea is that a static, unique utility func-
tion cannot fulfill the requirements imposed by the game in every situation. To
achieve this flexibility, we develop a task assignment routine based on utility
estimations, and as we will explain in the next section, is context-dependent.
This routine is an instance of a marked based technique which evaluates at
any time the configuration of the robots within the environment, generating the
best association between robots and tasks. More specifically, given a set of tasks
T = {τ1, τ2, ..., τm} for a team of robots R = {r1, r2, ..., rn}, a utility estimation
vector (UEV) can be defined as vector containing a list of estimations of “how
good” a particular robot is for each task τi at a certain time. In other words,
if we define bi,j(t) the estimation that the robot ri computes for the role τj at
time t, the UEV for such a robot can be expressed as:

UEV i(t) =
[
b(i,1)(t), ... , b(i,m)(t)

]
(4)

Consequently, we can define utility estimation matrix (UEM) a matrix where
each row i is the UEV for each robot ri. This matrix is computed individually by
each robot and it is built by gathering the UEVs coming from all the teammates.
Formally, this matrix will have the following form:

UEM i(t) = [UEV 1(t), ... , UEV n(t)] . (5)

By considering the score of each robot and the current configuration of the
distributed world model, given the score of each robot b(i,j), we can define a
coordination mapping function Φ, which assigns to the task τj the robot with
the highest score b(i,j), breaking ties randomly.

3.2 Context System

Our aim is to use contextual knowledge to increase the robot performance in
accomplishing a given task. In our scenario, contextual knowledge is used to help
the robots to evaluate the events and their effects: how they are triggered; how
they modify the environment; how long their effects persist in time. In order to
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consider contextual information, we introduce in our approach a representation
of contexts. Contexts, can be thought as specific configurations of the operational
environment. For example, in a soccer game a context could be when the ball
rolls out of the field and it needs to be put back into the game, or when the robots
need to coordinate in environments with low-bandwidth for communication.

Our approach exploits the output of the contextual system to handle the
events occurring during the game. More specifically, the context system out-
puts contextual features, which are used to weight events and their effects on
the distributed world model. Formally, we characterize the context system as
a function CS that takes in input sensory data D, internal robot states S, and
external environment dependent information I. CS outputs contextual weights
related to the notified events. Formally CS can be defined as:

CS : [ D × S × I ]→ C

where the vector of context weights C ∈ Rk, with k = ‖E(t)‖.
In our formulation such contextual features C are used to influence the reg-

ular operation of the coordination system in order to improve the efficiency in
executing a task. Accordingly, at any time t the set of events is weighted as:

Ew(t) = C · E(t). (6)

At this point, by considering Eq. 2, we can influence the coordination system
using each weighted event Ew, resulting in:

LM i(t) = ψ(Ew(t),LM i(t)). (7)

The context system influences the robot behavior by specializing their actions
according to the current contexts. The key insight is that a more specialized and
informed agent improves its performance. We exploit this concept in a RoboCup
scenario to enhance the capabilities of a soccer robot team, but it could be
applied to any coordination system.

4 Coordinating in the RoboCup Soccer Scenario

Our approach to coordination has been developed in the RoboCup Standard
Platform League scenario. The approach has been deployed on a team of NAOs,
which are commercial, autonomous, 25-DOFs humanoid robots. Such robots are
equipped with a wide variety of sensors and actuators, including two CMOS
cameras, multiple proximity sensors, four micro-phones, and two speakers. In
the chosen scenario, a team of robots needs to coordinate in a 9x6 meters soccer
field of the RoboCup Standard Platform League.

In this section, we describe in detail our approach applied to the RoboCup
Standard Platform League scenario. Accordingly, we first introduce the modeling
of context information related to the soccer scenario. Next, we illustrate how
these contexts can be recognized during a soccer game. Finally, we describe how
these contexts can be used to improve the coordination of a team of robots.
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4.1 Representing Contexts

Defining and representing contexts and context information is a non-trivial task
even in a simplified scenario such as a soccer game. To overcome this issue we
propose a hierarchical structure, used to recognize possible contexts occurring
in the soccer scenario.

In this setting, we formalize two different layers for properly representing
contextual information, namely the task-related and the environmental layer. In
the task-related layer, we encode a set of three basic contexts called task-related
contexts (CT ):

– Playing: the robots know the current location of the ball, and the robot
coordinate according to the default task-space comprising the common task
in a soccer scenario, i.e. striker, defender, supporter and second supporter;

– Search for ball: the robots do not know the ball position and cooperate in
order to minimize the time in locating the ball;

– Throw-in: the robots are searching for the ball but can modify their search
strategy by exploiting particular rules governing the soccer scenario.

In the environmental layer, we instead characterize the world depending on
the network reliability that allows us to define another two contexts, called en-
vironmental contexts CE :

– Network up: the robots are in a suitable network condition, i.e. the mes-
sages exchanged among the robots are received in a fixed amount of time;

– Network delayed: the current network condition does not allow a reliable
communication among the robots.

The environmental contexts do not affect the task-space, but actively influence
the coordination system. For instance in a network-delayed setting the robots
modify coordination parameters such as the role-persistence. This parameter is
used to control how roles are swapped among active robots. Specifically, each
robot waits a given amount of time before releasing the role and assuming the
new role. This is used to avoid too frequent role swappings and to allow for a
more robust task allocation during a game. Since the role-persistence is defined
as a time interval, it is crucially important that messages coming from other
robots are evaluated depending on quality of the network in order to consider
possible delays and, consequently, misleading information. Accordingly, when
the network communication is limited, the robots can adaptively change the
amount of messages exchanged among the active robots to limit the traffic in
the communication.

It is worth remarking that contexts within the same layer are mutually exclu-
sive. For example, if the ball has been seen (i.e. we are in the Playing context),
the team can be either in a network-up or in a network-delayed contexts. There-
fore, in this scenario we define context information as a tuple of two elements,
one for each layer, namely

C = 〈cT , cE〉

where cT ∈ CT and cE ∈ CE represent the context for the task-related layer and
the environmental layer, respectively. Fig. 1 illustrates our multi-modal hierarchy
for representing context information.
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Fig. 1. Multi-Modal Context hierarchy in a soccer scenario.

4.2 Recognizing Contexts

As described in the previous section, during a soccer game we distinguish five
different contexts. The three Task-Related Contexts (Throw-In, Ball Lost, and
Playing) are recognized through the perceptions of the robots and the messages
sent by the Game Controller to all the players. In particular, Throw-In considers
the scenario in which the ball has rolled out of the field and is flagged by the
Game Controller. Ball Lost is recognized only through the perceptions of the
robots which have lost the sight of the ball. Finally, Playing considers the scenario
in which the game is normally played and is assumed as the default context.

In multi-robot coordination the robots share useful information via wireless
communication. However, a reliable network support is not always guaranteed
in real applications. RoboCup competitions are not an exception. To this end,
the two Environmental Contexts (Network up and Network delayed) are rec-
ognized based on multiple measurements locally and periodically performed by
each robot. Specifically, each robot evaluates the current state of the network at
each time step by considering the Round Trip Time (RTT) of the sent packages.
The RTT is defined as the time elapsed between the moment in which a package
is sent from a source A to a source B and the moment in which B acknowledges
to A that the package has been received.

During the game we periodically compute the RTT among the robots pair-
wise. This measurement allows us to have an understanding of the quality of
the network for single channel of communication (i.e., between two robots of
the team). Additionally, by considering all the communications within the team,
we are able to understand the global network level (GNLRTT ) by averaging the
single channel estimations. This percentage measures the quality of the network
depending on the RTT. Such a measurement is set to 100% if in average the
RTT is smaller than a given threshold, or it is decremented if the acknowledge
of a given package is never returned.

Finally, we define ranges of network reliabilities over the GNLRTT in order
to influence the robots’ behavior. We manually set a discriminative value α =
50% for determining environmental contexts (Fig.1). We estimated the value
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of α on several testing sessions, noticing that a lost of packages associated to a
GNLRTT ≤ 50% heavily affects the performance of the underneath coordination
system. Accordingly, we define two ranges that result into the two different
environmental contexts:

– Network up: the GNLRTT > α
– Network delayed: the GNLRTT ≤ α

As a consequence, we influence the coordination system considering the con-
textual features generated by the two contexts. We identify a set of important
parameters which are strongly network dependent, namely the rate of the pack-
ages sent, the weight of the events notified by a robot with a poor individual
GNLRTT , and the role-persistence used to switch roles among active robots.
For instance, if the team realizes to be in the Network Delayed context, then we
decrease the amount of exchanged data towards robots with a poor RTT and
decrease the reliability of the information coming from them, as described in the
following section.

4.3 Using Contexts

In this work we focus on the use of contextual information to more effectively
coordinate a team of robots. Our main contribution is to demonstrate that by
properly formalizing context and their influence within on the coordination sys-
tem, we can decrease the number of variables to be optimized in a task allocation
process, and most importantly, we decrease their operative numerical domain.

For instance, in our coordination system, we have a set of twelve roles that
each robot can assume. Considering that each role cannot be selected by two
robots simultaneously, without being able to recognize contexts we would have to
search in a space composed by 12! states. By using a contextual categorization of
such roles, instead, we can split them in 3 different groups. Now, the search space
for the task allocation within each context is composed by 4! states. For large
search spaces this can yield a big reduction in the complexity of the problem.

In the following, we describe how contextual information is used to shape
the coordination system, both influencing the distributed world representation,
and generating utility estimations, for the task assignment routine, that better
satisfy the current context requirements.

Distributed World Modeling For the considered scenario, we adopt an occu-
pancy grid model to represent the environment and reason about it. This struc-
ture is suitable to encode meaningful information and synchronize the robots
views. More precisely, each cell of the grid encodes information such as team-
mate and opponent positions, the estimated ball position, and an estimation of
the wireless signal level.

For instance, in the search context the grid is used to locate the next-most-
likely position of the ball and to minimize the time needed to recover it. In
this setting, we divide the field into cells with a fixed granularity assigning to
each cell a probability score, which represents the likelihood of finding the ball
in that particular area. The robots are displaced within the field in accordance
with the top scoring cells, and coordinate to minimize the time spent in reaching
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a given area to be explored. Such areas represent the targets of the coordination
algorithm and are constantly updated, while the players are roaming.

More precisely, while searching, the robots lower the score of the near cells
and rerank the most promising ones. This procedure automatically generates
clusters of explored and unexplored cells. The former is used to synchronize the
distributed world model, while the latter is used to define the targets of the co-
ordination system. The robots share the centroid of explored clusters to exclude
recently controlled areas from the search. In this context, the reconstruction
function of Eq. 1 is defined as

∀roboti cellj = arg min
i
{cellij} (8)

where cellj is the score of the j-th cell in the DWM, which represents the min-
imum score for the j-th among all the partial local models of the robots LMI .
Such a score has a default value for each context and cell, which is accordingly
modified during the execution of the searching task.

Task Allocation The robots are coordinated using a DTA based on utility
estimation. Therefore, we define a utility function, according to Eq. 5, that given
a robot and a task, it returns a score representing how suitable the input robot
is for the input task. Further, depending on the current context, the utility
function changes to fulfill the requirement of the environment and the current
task according to Eq. 7.

Let us assume to be in a playing context. In this case, the utility function
takes into account the euclidean distance between the ball and the robot; the
distance between the robot and a target position; the robot orientation; the
elapsed time since the current role was assigned; and a bias term for each robot
(such bias is used to solve ambiguous situations). This function is defined as:

uv(i,j) = penalty * playing_utility_function(i,j)

where uv(i, j) is the utility score for the j-th role with respect to the i-th agent
and penalty is a parameter used to prioritize the most important tasks. Each
weight has been empirically calculated after several testing sessions and the
penalty variable is used to assign negative rewards to fallen or penalized robots.
The players share their utilities, and once their utility matrices are complete,

Fig. 2. Distributed World Model in the soccer scenario.
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they can decide the best role to assume. The robots check the matrix column-
wise and assign to the j-th task the robot with the maximum score.

Similarly, in the searching contexts the robots use exactly the same criterion
to allocate tasks with respect to the areas to look for the ball. The utility function
takes the following form

uv(i,j) = searching_utility_function(i,j)

where uv(i, j) is the utility score for the j-th centroid with respect to the i-th
agent. Due to the new utility function, we can minimize the time for exploring
most promising areas.

In order to guarantee more robustness to the task allocation, a role-time-
persistence has been introduced. However, this choice imposes the usual trade-
off between stability and reactivity. To efficiently adapt the role-persistence, we
exploit the environmental context. In particular, we adapt the role-persistence
relying upon the current configuration of the network.

5 Experimental Results

The algorithm has been extensively tested in a virtual RoboCup-dedicated en-
vironment developed by the B-human Team2 and it has been deployed on a
team of Nao robots. In order to show the improvements of our coordination al-
gorithm, we set up several experiments with different configurations. Our aim is
to highlight specific features of the algorithm, and to test the thesis behind our
coordination approach (i.e. the fact that a properly informed coordination can
considerably enhance the performances).

In the first setting, we demonstrate the improvement of our system with
respect to a non-context-aware approach. In this configuration, we deploy two
teams that share the same high-level behaviors, one featuring the context-based
coordination (blue team) and the other modeling a unique utility estimation for
the whole testing session (red team). Specifically, the red team does not modify
its utility estimations, if the ball is not seen or if the ball rolled out of the field.

In this setting, we measured the cumulative time during which the ball was
not seen by the team in 10 minutes of the game. In Fig. 3 (a) we can notice
that the recovering time is considerably reduced when deploying the proposed
approach. Further, it is worth highlighting the importance of different levels of
information in the context system. In a Throw-In context, in fact, the ball is
subject to specific rules and the performance can be further enhanced.

Instead, Fig. 3 (b) highlights the robustness of our approach with respect
to the robots’ field of view. In this setting, we again measured the cumulative
time during which the ball was not seen by the team during a 10 minutes game.
In this experiment, we varied the robots’ field of views to 2, 3 and 9 meters.
It is worth noticing that both teams improve their performance. However, the
context-coordination preserves a better profile in all the configurations.

Finally, in order to show the effectiveness of our approach in managing net-
work contexts we report the stability of the role switching with respect to the
quality of the global network level GNLRTT introduced in the previous section.
To this end, we traced the network GNLRTT in a real gaming session, and then

2 http://www.b-human.de/
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(a) (b)

Fig. 3. The blue team features the context-coordination, while the red team is not
context aware. On the y-axis, the averaged cumulative sum of the time interval in
which the robots do not see the ball is shown, while on the x-axis, we report the results
for two different contexts (a), and three depth values for the robots field of view (b).

we run several experiments by varying the simulated network stability with re-
spect to the logged GNLRTT . This, allows us to have more reliable simulated
testing session and have a realistic profile of the GNLRTT during a game. In
such testing sessions, we report the error in meters that each robot has with
respect to the assigned role. In this setting, both the blue and the red team
features the context-coordination, however, the blue team role-persistence that
controls the role switching is changed depending on the GNLRTT , while the
red team switches roles according to a fixed role-persistence threshold. Our goal
is to generate a more robust behavior when the network has a poor reliability,
and simultaneously, a more reactive role mapping when the team is experiencing
a good communication setting. As in the previous experiments, the tests have
been carried out in multiple sessions of 10 minutes of an SPL game. Fig. 5 shows
the results obtained in a testing session. We report, for each role, the error in
meters by computing the average of the error that each robot has during the
simulation, with respect the default position of the assigned role.

Fig. 4. The y-axis shows the error between the robots and the default position for the
assigned role, while the x-axis reports the set of roles: Defender (De), Supporter (Su),
Jolly (Jo) and Striker (St). The blue team adapts its role-persistence depending on the
GNLRTT , while the red team adopts a static role-persistence time threshold.

In this setting the two team feature the same coordination system and the
performance is only conditioned by the role-persistence policy. Also in this con-
figuration, we notice an improvement in formalizing environmental contexts as
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the network status. In our opinion, such context-related information is a starting
point for handling network issues, and it needs to be better investigated in order
to further improve team coordination.

6 Conclusion

In this paper we have presented a novel method for coordinating a team of
robots. Starting from the idea that a more informed team will eventually show
improved performance during task execution, we presented an approach that in-
tegrates utility estimations and a distributed world knowledge to come up with
a mapping of robots to roles. The proposed method presented extracts context
information to influence and modify the coordination rules and select the most
suitable configuration in accordance to the current situation. Given the previ-
ously described experimental results, we are able to state that the Context-based
coordination provides the expected improvements. Indeed, the specialization and
the adaptation of the coordination algorithm significantly increases the perfor-
mances of a team of robots.

Considering the results obtained with this approach, our intent is to gener-
alize the method for addressing the problem of “Multi-Robot coordinated search
and target localization”. The main idea is to deploy a coordinated team of robots
to localize multiple targets (e.g. lost objects, control malfunction infrastructures,
victim assessments) in an arbitrary environment and to improve the execution
of the current robots’ tasks by exploiting any kind of information that can help
the robots to specialize their search and to improve their performances.
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