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Abstract. Robots need a suitable representation of the surrounding
world to operate in a structured but dynamic environment. State-of-the-
art approaches usually rely on a combination of metric and topological
maps and require an expert to provide the knowledge to the robot in
a suitable format. Therefore, additional symbolic knowledge cannot be
easily added to the representation in an incremental manner. This work
deals with the problem of effectively binding together the high-level se-
mantic information with the low-level knowledge represented in the met-
ric map by introducing an intermediate grid based representation. In
order to demonstrate its effectiveness, the proposed approach has been
experimentally validated on different kinds of environments.

1 Introduction

The requirement that robots operate in structured but dynamic environments,
without a priori knowledge, is growing. This is true not only for industrial robots,
but also for general purpose or domestic ones. Those, in fact, will soon become
available to a wide community of heterogeneous customers having high expec-
tations. When a robot has to intelligently act in an indoor location, maps rep-
resenting knowledge about the environment are usually provided beforehand.
In particular, metric maps and topological maps are used to this purpose. The
former is a geometric representation (i.e., an occupancy grid) of the surrounding
world, containing spatial information: state-of-the-art techniques rely on such
maps for autonomous navigation. The latter, is a graph based representation,
where nodes are associated with physical locations (i.e., areas of interest within
the environment) and edges are connections between locations. Topological maps
are mainly used to accomplish task-oriented goals, as well as to execute complex
robot tasks, since they can provide a link between symbols and locations.

While there are tools and methodologies for building metric maps, and, to
some extent, the topological map, all the knowledge about the environment
must be provided to the robot in a suitable format by an expert. This is not
satisfactory if symbolic and semantic knowledge has to be acquired incrementally
or if this process has to be performed on top of a metric map. In fact, neither
the occupancy grid, nor the topological map provide a good representation for
adding semantic knowledge. The occupancy grid cannot be directly annotated
with symbols, since it has a fine discretization, which is good for a rich description



of structural details, but not for the acquisition of high-level information. The
topological map is suitable for representing the connectivity of the environment
with respect to a set of symbols associated to it, but its structure can become
very nested and complex, leading to difficulties in physically locating the areas
of interest. Moreover, updating the topological graph can become a challenging
task, especially if the structure of the environment in the map can change due
to the continuous update of the representation.

Given the above considerations, it derives that an intermediate abstraction
layer, strictly linked to the metric map is needed for both acquiring semantic
knowledge and enabling the robot to build the topological map on top of the
real structure of the building, thus keeping in the high-level description a direct
connection with the physical world. Such an abstraction layer can be inserted in
a processing chain from the metric map to the symbolic representation of knowl-
edge about the environment, independently both from the mapping methods
and from the knowledge acquisition techniques.

This work focuses on the introduction of a grid based representation, borrow-
ing the idea from video-games. Indeed, in video-games, the problem of associating
logic, symbols and behaviors to areas of the game-scene has been studied since a
long time. However, differently from the top-down approach used in video-games,
where the logic influences the scene, we propose a bottom-up representation, in
which the environment is strictly conditioning the symbolic layer used by the
robot. We build a 2D grid representation of the environment, since grids are use-
ful to represent areas with equal properties and features with an intermediate
level of granularity with respect to metric maps.

The remainder of the paper is structured as follows. Related work is dis-
cussed in Section 2. The adopted representation and the algorithms used for its
extraction are detailed in Section 3, while the experimental evaluation of the
approach is described in Section 4. Conclusions are drawn in Section 5.

2 Related Work

There exists a large literature related to the problem of the symbolic and ab-
stract representation of knowledge about the environment. A first category in-
cludes fully automated approaches aiming at constructing environmental maps,
by classifying functional areas. To this end, many methods focus on the extrac-
tion of room attributes. Fabrizi and Saffiotti [1] and Buschka and Saffiotti [2]
present a local technique that uses range information to detect room-like data
during navigation, through a virtual sensor. Starting from the idea of divid-
ing occupancy grid into regions separated by local narrowings, as proposed by
Thrun [3], they work on an algorithm for partitioning the space in an incre-
mental way. In particular, computing a certain number of parameters for each
region, they produce a local-topological map. Similarly, Anguelov et al. [4] focus
on doorways detection and object-based modeling in order to define a probabilis-
tic model of corridors containing doors and walls. They parametrize each object
by its shape, color, and motion model in order to obtain the distribution over
possible observations of the robot. Galindo et al. [5] represent environmental
knowledge by augmenting a topological map with semantic knowledge, which



Fig. 1. Block scheme of the processing chain from the Metric Map to the A-Grid.

is extracted with fuzzy morphological operators, while Choi et al. [6] produce
a discretization of the environment based on quadtrees, which is then used for
producing a topological graph and for performing localization on the extracted
topological model.

A second category of techniques make use of classification and clustering
methods for the automatic segmentation and labeling of metric maps. Nüchter
et al. [7] extract environmental knowledge by labeling 3D points through the
gradient difference between neighboring points, which are then classified as floor-
points, object-points or ceiling-points. Mozos et al. [8][9], instead, extract simple
geometric real-valued features from scans, and classify them through an Ad-
aboost multi-classifier obtained by arranging several weak binary classifiers in a
decision list. A similar approach is proposed by Goerke and Braun [10], in which
a learning classifier is used to build semantic annotated maps from laser range
measurements. Other approaches have been proposed, based, for example, on
spectral clustering [11] or Voronoi random fields [12].

The last and more recent part of the research on automated environment
representation proposes, instead, techniques for object recognition and place cat-
egorization, based on visual features [13], or a combination of visual and range
information provided by an RGB-D camera [14]. For example, Pangercic et al.
[15] investigate the representation and acquisition of Semantic Objects Maps
(SOMs) in kitchen environments, by using RGB-D data and active manipula-
tion actions such as opening drawers and doors. However, a suitable structured
representation of the acquired knowledge is missing.

As a difference with respect to the above discussed methods, our approach
stems from the need for an efficient and general environmental knowledge repre-
sentation, able to easily and effectively bind together high-level semantic infor-
mation with low-level knowledge represented in the metric map. We show how,
by taking as input a metric map generated through any SLAM method, we can
create a general yet effective representation of any environmental knowledge.
Moreover, we show how most of the techniques proposed in the literature, either
automatic or user-guided, can be easily integrated and exploited to enhance the
overall quality of the semantic map.

3 Extracting the Structural Representation

The 2D structure of the environment is captured through an abstract grid, called
A-Grid (see Fig. 1). In detail, we first build such a grid, and then we add knowl-
edge on top of it. In order to build the A-Grid, we extract the lines corresponding
to the walls of the building (that are the basic elements to form the grid itself).



The A-Grid is a discretization of the metric map having two important proper-
ties: 1) It is non-uniform in the interface towards the metric map, since the cell
size varies as a function of the detected walls; 2) It provides a uniform interface,
being accessible as a simple matrix. Using such a representation structure, we
finally divide the building in functional areas and doors, thus providing the in-
formation needed for the creation of a topological map, where symbols can be
eventually associated to nodes.

3.1 A-Grid Construction

The purpose of the desired representation is to have a tool for creating semantic
maps on top of the low level information about the environment and not the
pure improvement in terms of computation efficiency. The existing discretiza-
tion methods already available as KD-Trees or quadtrees, however, would nei-
ther produce an easily accessible representation (e.g., a matrix), nor correctly
identify the global structure of the environment. The A-Grid represents, instead,
a discretization of the environment which allows to associate an area in the real
world to a label. The algorithm for constructing such an abstraction takes as
input the occupancy grid which is commonly used for robot navigation (metric
map), outputting a layer which reflects the structure of the environment. This
step can be seen as a rasterization process, since each cell of the grid represents
a portion of a physical area of the environment and, from a functional point of
view, it is an abstraction of locations that are not distinguishable.

Wall Detection Since the approach is focused on the knowledge acquisition in
indoor environments, the production of the grid relies on the extraction of the
lines corresponding to the walls. Those lines are highly informative, being com-
monly used for the separation of different functional areas in offices as well as in
domestic environments, and usually describing a top-view, regular structure of
the building. Indeed, walls in maps are usually represented as straight horizontal
or vertical lines. However, even considering those regular patterns, the lines cor-
responding to the walls cannot be extrapolated by directly looking at the metric
map. When considering the occupancy grid the following aspects may be taken
into account: 1) Noise, due to positions occupied either by humans moving in the
environment during the map acquisition or by very small objects, such as legs of
tables or chairs; 2) Big objects (e.g., a closet), at the border or within the build-
ing, which generate occupied locations in the metric map (artificial walls); 3)
Incomplete laser-scans, which compromise the regular structure of the building
(e.g., caused by closed doors).

In order to deal with noise, a pre-processing step is required at the metric
map level. Specifically, we applied the Canny Edge Detector, determining the
threshold values through a multi-map tuning procedure and considering a trade-
off between overall performance and noise reduction. In detail, the threshold
values have been selected to be 1 for the lower one and 30 for the upper one.
The result is a reduction of noise which, however, allows to maintain relevant
lines from the map (Fig. 2a). Although empirically defined, those thresholds
turned out to be suitable in all our experiments, always detecting the edges of
the map.



Algorithm 1: WallDetection
Data: W: wall segments set, D: detected segments set

Input: map: pre-processed metric map, max threshold, min threshold, min line distance,
max angle distance

Output: W
1 Initialize: W ← ∅; D ← ∅; threshold← max threshold;

2 while threshold > min threshold do
3 distance resolution ← 2;
4 angle resolution ← π/2;

5 min distance ← max(max thresholdthreshold ,min line distance) // compute adaptively a min

distance from the already acquired walls
6 D ← D ∪ HoughTransform(map, distance resolution, angle resolution, threshold);

7 for d ∈ D do
8 isFar ← true;

9 for w ∈ W do
10 if |distance(d)− distance(w)| < min distance and

|angle(d) (mod π) − angle(w) (mod π)| < max angle distance then
11 isFar ← false;
12 break;

13 if isFar = true then
14 W ←W ∪ d;

15 threshold← threshold - 1;

Since knowledge about objects cannot be handled within this abstraction
layer, we accept artificial walls in the map and postpone the detection of the
corresponding objects to a subsequent processing layer. In a first analysis, the
Wall Extraction algorithm (see Alg. 1) considers only long and continuous lines.
These are detected through the use of the Hough Transform (with high accumu-
lator threshold), which returns the Polar coordinates (ρ, θ) of the lines that get
many votes. Furthermore, due to the regular structure which usually character-
izes our buildings, only horizontal and vertical lines are considered as candidates
in this process. In this way the approach can deal with incomplete laser scans,
since their image in the metric map is usually highly irregular. This step is
shown in the lines 4 and 6 of the pseudo-code. The lines that form the grid are
selected by gradually reducing the threshold value and, consequently, the length
constraints. The lines are accepted only if their distance from the previously
acquired lines is greater than a value (line 10 of the Algorithm), which is de-
termined adaptively as a function of the accumulator threshold (line 5). This
allows to discard a large portion of false-positives corresponding to irregularities
in the laser scans and to noise (usually very small in length) that are evaluated
in the last cycles of execution of the algorithm, when almost all the walls have
been already detected. An example of the result obtained from the wall detection
algorithm is provided in Fig. 2c, which can be compared to Fig. 2b where the
Hough Transform has been used without any additional selection criteria.

Grid Generation Grids are commonly used, both in video games, robotics and ar-
tificial intelligence, for representing maps and reasoning on them. The generation
of the grid is the main procedure for creating a qualitative representation of the
environment, whose importance is linked to robot’s high-level behaviors. Indeed,



Fig. 2. a) Edges of the metric map. b) Result of the Hough Transform performed on
the metric map. c) Result of the wall detection algorithm.

Fig. 3. a) A-Grid example, obtained through the algorithms described in Section 3.1;
b) Area segmentation obtained through manual tagging.

an intelligent agent does not necessarily need a uniform grid representation, but
a consistent one, in which cells may differ in size in order to represent portion of
the environment which will be similar from a functional point of view. In order to
achieve this goal, two steps are required. First, extending the segments generated
through the wall detection to the whole image (Fig. 2), the minimum horizontal
and vertical distances are computed (xmin, ymin). Then, each other pair of par-
allel lines is considered, and a new one is inserted between them only if their
distance is at least twice xmin or ymin, depending on their angle. This adaptive
procedure (Alg. 2), creates a grid whose cells have a size between xmin ·ymin and
2xmin · 2ymin. In particular, from line 2 to line 14 of the reported pseudo-code,
the minimum distance between wall segments is computed (line 9). Those wall
segments are also used in order to initialize the grid (line 14) and a processing
queue (line 13). Then, a pair of parallel lines < first line, second line > is ex-
tracted from the queue itself, until it is not empty (lines 15-16). If their distance
is at least twice xmin or ymin (line 22), a new line is inserted between them
in the grid, with the same angle, and the two pairs < first line, new line >,
< new line, first line > are added to the queue in order to recursively produce
the final grid.



Algorithm 2: GridConstruction
Data: W: wall segments set, G: grid lines set, Q: processing queue

Input: W, xmin, ymin, map height, map width, max angle distance

Output: G
1 Initialize: G ← ∅; Q← ∅;
2 for w1 ∈ W do
3 segment dist ← max(map height,map width);
4 first line ← ∅;
5 second line ← ∅;
6 for w2 ∈ W do
7 if |angle(w1) (mod π) − angle(w2) (mod π)| < max angle distance then
8 first line← w1;
9 if distance(w1)− distance(w2) > 0 and distance(w1)− distance(w2) <

segment dist then
10 second line← w2;
11 segment dist← distance(w1)− distance(w2);

12 if segment dist 6= max(map height, map width) then
13 Q← Q ∪ < first line, second line >;

14 G ← G ∪ w1;

15 while Q 6= ∅ do
16 < first line, second line >← return and remove last element(Q);

// for vertical lines xmin, for horizontal ones ymin

17 if areVertical(first line, second line) then
18 max dist ← xmin;

19 else
20 max dist ← ymin;

21 value ←
⌊ |distance(first line)− distance(second line)|

max dist

⌋
;

22 if value > 2 then

23 new distance ←
distance(first line) + distance(second line)

2
;

24 new line ← line(new distance, angle(first line));
25 G ← G ∪ new line;
26 Q← Q ∪ < first line, new line >;
27 Q← Q ∪ < new line, second line >;

The obtained discretization (Fig. 3a) is associated with a matrix data struc-
ture, providing a qualitative representation consistent with the metric layer and
which allows for a simple integration of symbols and semantics. On the one hand,
the grid is built on the basis of the walls and, therefore, it is consistent with the
structure of the environment; on the other hand, the granularity is high enough
to endow the robot with a structure for embedding symbolic knowledge about
the building, and the interface provided by the A-Grid is uniformly accessible
as a matrix. Moreover, it is always possible to associate a cell of the matrix to a
position in the environment, and viceversa. In fact, each location of the building
can be linked to a cell in the A-Grid. On the contrary, if a single location is
needed starting from the cell indexes, it is convenient to consider its center as
a reference. Specific constraints on the final position may be easily accommo-
dated. In practice, the reference to the center of the cell is acceptable both from
a qualitative representation and task execution point of view.



Fig. 4. a) A-Grid computed on a map from the Radish Data Set; b) Area segmentation
obtained through manual tagging.

3.2 Area Segmentation

The area segmentation process is used for labeling each location inside the en-
vironment, by associating it to a node of the topological map. In particular, a
label is assigned to all the cells of the grid within the building, while the ele-
ments of the matrix without an associated tag are considered to be out of any
functional area. The segmentation of the map in functional areas is performed
on the basis of the contours extracted from the metric map, together with a
series of tags which can be acquired through several modalities. In detail, two
types of tags are available: door-tags or area-tags. Three different approaches are
used to perform this activity: manual tagging, human-robot interaction (HRI)
based tagging and automatic tagging through simple heuristics. As in previous
approaches [1][2], these heuristics find the narrow passages in the metric map.
However, we also perform a selection among them based on their regularity in
the structure, as well as their proximity and the number of points around them.
Starting from those, each room is considered to be separated from the others
by a door. Therefore, by evaluating all the acquired tags, a set of segments of
appropriate size, corresponding to the doors, is added to the detected contours
of the metric map, closing each functional area. If no human collaboration is
available, area-tags are obtained from the centroid of each obtained portion of
the environment. Then, similarly to Buschka and Saffiotti[2], we use each area-
tag as a seed for a Watershed-based region growing algorithm. In particular,
the algorithm, which considers the obtained map as a topographic relief, is the
OpenCV implementation of the procedure described by Meyer [16]. The opening
morphological operator (which is an erosion followed by dilation) is then applied
to the obtained segmented map (Fig. 3b). Finally, each area can be extracted
by applying a color based segmentation starting from the tag of the desired
functional space.

4 Experimental Validation

An experimental validation has been carried out in order to show the effective-
ness and the robustness of the proposed method. Several experiments have been



Table 1. Comparison between the pixels of each processed Metric Map and the cells
of the corresponding A-Grid.

Map Pixels Cells

BelgioiosoCastle 768 792 11 600
dis-B1 1 080 700 10 290
dis-B1-part 501 840 7372
dis-Basement 992 785 13 455
FortAPHill 534 520 7878
Freiburg 335 248 4794
HospitalPart 30 000 285
Intel 336 399 4473
scheggia 92 984 1116
UBremen 831 264 10 962

therefore conducted by using the publicly available Radish Data Set1. Specifi-
cally, six 2D metric maps2, obtained from different SLAM methods, have been
processed in order to test our A-Grid representation on a number of different oc-
cupancy grids (Fig.4). In addition, four maps generated by our robots have been
processed, obtaining a total of ten completely different environments processed
by the algorithm. To give an intuition of the reduction in terms of the size of the
representation, in Table 1 we show the relation between the pixels of the Metric
Maps and the cells of the corresponding A-Grid. They differ by roughly two
orders of magnitude, depending on the complexity of the map. This underlines
that the representation is compact, easily enhanceable with symbolic informa-
tion and suitable for an optimized access and processing. Using a representation
obtained from the application of KD-Trees or quadtrees would probably lead to
further improvements in terms of performance. However, as previously stated,
KD-Trees or quadtrees, however, would neither produce an easily accessible rep-
resentation as the one produced by the A-Grid, nor correctly identify the global
structure of the environment.

Since only the environments represented in the maps produced by our robots
were accessible, only such maps have been tagged through a specific developed
human-robot interaction (HRI). In detail, we incrementally augmented these
maps by adding semantic knowledge about areas, doors, and objects through
the help of the user, according to the approach known as Symbiotic Autonomy
[17]. The system allowed to consistently build and update semantic maps of the
environments, over a large set of tests, that included many rooms and objects in
different kinds of functional spaces. For a detailed overview of such an approach
see [18], where a comprehensive description of the full process, with qualitative
and quantitative analysis, is provided.

1 http://radish.sourceforge.net/index.php
2 The algorithm was applied to the following maps: albert-b-laser,

ap hill 07b, ubremen-cartesium, intel lab, belgioioso and a portion of hospi-
tal floorplan fort sam houston



Qualitative results obtained by applying our algorithms are shown in Fig. 5
and Fig. 6. In detail, these images depict the integration of the information
about areas within the A-Grid structure, from the uniform, matrix-like interface
provided to the topological map: each cell in the grid is an element of a matrix,
annotated with a set of symbols, and it corresponds to a particular space in
the physical world. These representations allow to easily implement high-level
reasoning, without loosing the low-level information, being the actual correspon-
dence between cells and real coordinates kept by the system. For example the
procedure for area segmentation, when directly performed on the A-Grid, sig-
nificantly reduces the computation effort and improves the accuracy of the final
result. Similarly, using the A-Grid with a simple A* procedure finding the path
between two locations in the environment is a fast process, while a search on the
full metric map would be expensive, if not unfeasible.

Fig. 6 shows the representation obtained on two HRI-tagged maps directly
produced by our robots. As it can be observed from the figure, our represen-
tation allows to correctly integrate metric and symbolic information about the
environment: each functional area is graphically represented with a different
color, doors are shown in blue and objects in red. Note that using HRI tagging
enables a higher precision both in performing the area segmentation and in se-
mantically characterizing the environments. Since in this case the representation
includes the objects, their spatial positioning on the A-Grid is easily identifiable.
Moreover, the A-Grid allows for a suitable definition of a topological graph in
order to implement a planning system for the robot on two levels [18].

In general, it can be observed that a very good correspondence can be ob-
tained between the real environment and the structured information within the
A-Grid. Moreover, the A-Grid, once produced through the process illustrated in
the paper, provides an interface to the environment representation that is easily
accessible and independent of the methods chosen to built it. Finally, it is worth
noticing that, even if the A-Grid has been developed for ordinary (regular) build-
ings, it can be successfully applied to environments with irregular edges. Visual
evidence of this, as well as of human-driven knowledge acquisition can be found
at www.dis.uniroma1.it/∼gemignani/Articles/ias13.html, together with all the
maps processed by our automatic segmentation algorithm.

5 Conclusions

In this paper we have introduced the A-Grid, an intermediate grid based rep-
resentation that can easily and effectively bind together high-level semantic in-
formation and low-level knowledge represented in the metric map. By taking as
input a metric map (e.g., produced by a SLAM algorithm) and a set of seman-
tic tags (acquired automatically or through the interaction with the user), the
proposed approach builds such a representation. Several tests have been carried
out on multiple maps generated by different robots, as well as on maps from the
publicly available Radish Data Set. Finally, the algorithms have been embed-
ded into a complex system [18] that can consistently build and update semantic
maps, over a large test set, including a large number of rooms and objects with
different functional use.



Fig. 5. Structural representation for a set of maps obtained through automatic door
detection and area segmentation. The figure shows the integration of the information
about areas within the A-Grid structure, from its uniform, matrix-like interface: each
cell in the grid is an element of a matrix, with a set of symbols associated, and it
corresponds to a particular space in the physical world.

Fig. 6. Integration of the information about areas, doors and objects obtained through
HRI within the A-Grid structure, from its uniform, matrix-like interface.
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