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Abstract. One of the long-term goals of our society is to build robots able to
live side by side with humans. In order to do so, robots need to be able to reason
in a qualitative way. To this end, over the last years, the Artificial Intelligence
research community has developed a considerable amount of qualitative reason-
ers. The majority of such approaches, however, has been developed under the
assumption that suitable representations of the world were available. In this pa-
per, we propose a method for performing qualitative spatial reasoning in robotics
on abstract representations of environments, automatically extracted from metric
maps. Both the representation and the reasoner are used to perform the grounding
of commands vocally given by the user. The approach has been verified on a real
robot interacting with several non-expert users.

1 Introduction

One of the long-term goals of our society is to build robots able to live side by side with
humans, interacting with them in order to understand the surrounding world. However,
to reach such a goal, robots need to be able to understand what humans communicate
(Fig. 1). The conventional numeric approach used in robotics is in fact deeply differ-
ent from natural language interaction between people. The former is based on precise
metric information about already well known environments, in which each element is
uniquely specified only through its coordinates. The latter can deal, instead, with am-
biguities and spatial uncertainties, which are solved by referring to purely qualitative
properties of objects, or relations among them: correct grounding of spoken informa-
tion and places of the world can be obtained even with incomplete spatial knowledge.
Many difficulties arise when trying to move from a numeric representation of the world
to a qualitative one. Especially if the commands to be executed by the robot are given
through speech.

Many theories have been developed in the field of Artificial Intelligence, demon-
strating that Qualitative Spatial Reasoning [1] can overcome the problems arising from
indeterminacy, by allowing inference from incomplete spatial knowledge. Implementa-
tions of this kind of reasoners enable disambiguation between objects through spatial
relations like directions or distances, thus allowing to improve symbol grounding on
robots equipped with a speech recognition system. However, the majority of theories on
qualitative spatial reasoning have been developed under the assumption that discretized
representations of the world were available. Usually, this is not true for robots, that need
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an abstraction of the environment strictly depending on its underlying structure, in order
to reason about actions which can be executed.

In this paper, we propose a method for performing qualitative spatial reasoning on
robots. In detail, we applied the cone-based approach, presented by [2], to an abstrac-
tion of the environment specifically built for a consistent integration of high-level rea-
soning and numeric representation. Both the representation and the reasoner are used
in order to perform grounding of commands vocally given by the user to the robot.
The proposed approach has been subsequently validated. In particular, by analysing
the number of grounded commands in different settings, we pointed out multiple re-
lations between such commands and the amount of knowledge available to the robot.
Moreover, we performed additional experiments to identify the major issues that occur
during the grounding process, by analyzing the user expectations with respect to the
system outputs.

Fig. 1: User interacting with a robot through natural language interaction.

The key contributions of our work are the following. First, we introduce an abstract
representation of the environment useful for the deployment of many theories of AI
on real robotic applications. Second, we present a method for automatically adding,
on such a representation, a high-level description of the objects through the interaction
with the user: each object is represented as a composition of rectangles, easily enabling
for the computation of spatial properties and relationships. Finally, we describe how,
by exploiting the easiness of use of both the object and the environment representation,
reasoning on areas can be effectively accomplished, according to well founded theories
about Qualitative Spatial Reasoning.

The remainder of the paper is organized as follows. Related work is illustrated in
Section 2, followed by a description of how the environmental representation is built,
given in Section 3. Section 4 will show, instead, how the representation can be used
to ground the commands given by a user, by exploiting a specifically implemented
qualitative spatial reasoner (QSR). Finally, the experiments undertaken to validate this
approach are reported in Section 5, while Section 6 will discuss the work presented and
the future developments.
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2 Related Work

In order to understand commands that use qualitative spatial references for distinguish-
ing objects in the environment, first of all, a robot needs to be able of performing symbol
grounding. The problem of symbol grounding, namely the process of matching natural
language expression, with entities of the world and their corresponding representation
internal to the robot, has been addressed by many authors. For example, in [3] the
authors present a system able to follow natural language directions. In this work, the
process of grounding the user commands is divided in three steps: Extracting linguistic
structures related to spatial references; Grounding symbols to the corresponding phys-
ical objects within the environment; Reasoning on the knowledge acquired to extract
a feasible path. In [4], instead, the authors describe a robot able to learn and use word
meanings in three kind of tasks: indoor navigation, spatial language video retrieval, and
mobile manipulation. They propose an approach for robustly interpreting natural lan-
guage commands, based on the extraction of shallow linguistic structures. In particular
they introduce a Generalized Grounding Graph able to handle multiple arguments or
sentences nested into the commands. Finally, in [5] a sophisticated robot is described,
equipped with a symbolic high-level spoken dialogue system that uses Discourse Rep-
resentation Structures [6] to represent the meaning of the dialogues that occur with user.

The second key aspect needed to understand commands of the type “go in front of
the closet next to the emergency door", is the ability of reasoning about spatial directions
in a qualitative manner. In other words, the robot needs to be able of reasoning about an
object with respect to another object in a given reference frame. In the literature, spatial
relations are studied and used in various research fields. For example, in the “CogX"1

project [7] the spatial relations “in” and “on” have been used to define object targets for
indirect object search. Kunze et al. [8] have enhanced this work by using more restric-
tive spatial models to provide more tightly defined viewing probabilities. In particular,
by using information about landmark objects and their spatial relationship to the target
object, the authors show how a searching task can be improved by directing the robot
towards the most likely object locations. The authors of [9] use, instead, an extension
of the double cross calculus, introduced by [10], to express robot navigation objectives
that include spatial relations in a Mars-like environment. This work, however, lacks an
intermediate layer between the metric map and the high-level representation used for
reasoning. Finally, Loutfi et al. [11] look at this problem in the context of perceptual
anchoring to provide qualitative relations inferred from observed metric relations.

As well known in the research community of Qualitative Spatial Reasoning [12] the
representation of spatial knowledge is usually divided in “propositional" and “pictorial"
representations. The former cannot easily express structural properties, being focused
on formal properties of the representation itself. The latter, even preserving structural
properties, provide a low level representation which is not suitable for fast computa-
tions. Hernández suggests, in his work, the use of a hybrid representation, interfacing
these two categories as separate representations. Inspired by [12] and adopting a similar
approach, we propose a method for performing qualitative spatial reasoning in robotics,
where the interface between the metric information and the symbolic knowledge is rep-
resented by a grid-based structure automatically built by our robot (briefly described in

1 http://cogx.eu/
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Section 3). On top of the representation, we adopt a reasoning approach that exploits
shapes for distance and orientation qualitative calculus. Specifically, we decompose
spaces and objects in rectangles, adopting an intrinsic reference frame. For grounding
the command received by the user, instead, we follow the approach recently proposed
by [13]. In our system, the output of an automatic speech recognition module (ASR) is
matched with one of the frames representing the commands executable by the robots,
later grounded using definite clause grammars [14]. A more detailed description of the
processing chain from user utterance to task execution will be described in Section 4.

3 Representing the Environment

Starting from a low-level representation of the environment (Metric Map), rich of struc-
tural details, we have devised a method for automatically extracting a hybrid represen-
tation of the environment able to easily interface the symbolic and the structural layers
of knowledge. Such a representation has been obtained by capturing the 2D structure
of the environment through a grid, on top of which knowledge can be added. Such a
grid, in fact, has the key property of having cells of different size, in order to capture
the spatial similarity of close locations, while being uniformly accessible as a matrix.
Each element of the matrix, therefore, can be considered independently, being its spatial
relations kept by the structure of the matrix itself.

Since this work has been developed for domestic robots, operating in indoor loca-
tions, the first step performed in order to create a grid structurally coherent with the
environment is the detection of the edges of the map through the Canny Edge Detector
(Fig. 2a). Then, we find the segments corresponding to its walls, since they are the ba-
sic elements to form the grid itself. This process is performed by extracting the lines in
the image through the Hough Transform (Fig. 2b) and then applying a filtering process
(Fig. 2c) based on the length and distance of the segments. Starting from those, the
grid (called Grid Map) is produced in an adaptive manner: 1) The segments generated
through the wall detection are extended to the whole map image; 2) The minimum hor-
izontal and vertical distances (xmin, ymin) are computed; 3) each pair of parallel lines
is considered, and a new one is inserted between them only if their distance is at least
twice xmin or ymin, depending on their angle. The resulting grid, therefore, has cells of
a size ranging between xmin · ymin and 2xmin · 2ymin.

Fig. 2: a) Edges of the Metric Map. b) Segments extracted through the Hough Transform. c)
Segments obtained after the filtering process in the wall detection. d) Representation of the Cell
Map in which the areas of the environment are represented with different colors, the doors in blue
and the objects in red.
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On top of such a discretized representation, knowledge is added online by acquir-
ing information through the natural language interaction between the robot and the
human, to perform semantic mapping. Specifically, three types of knowledge can be
acquired: Areas (e.g., corridors, rooms, etc.); Structural elements (e.g, windows, doors,
etc.); Objects in the environment (e.g., tables, closets etc.). Using the Metric Map for
the autonomous navigation of the robot in the environment, the positions of the differ-
ent objects of interest are registered. The user can tag a specific object by naming it and
specifying its position through a commercial laser pointer, thanks to which the orien-
tation of the object is obtained by extracting its normal. The robot, in fact, is endowed
with a speech recognition system and a Kinect sensor for detecting the laser point and
extracting properties and shapes of objects, in addition to the laser range sensor used for
the localization process. Once knowledge is acquired, it is first inserted in a relational
database and, then, it is processed in order to be reported on the Grid Map, thus obtain-
ing the Semantic Map, composed by the Cell Map and the Topological Graph. The Cell
Map (Fig. 2d) contains a high-level description about the regions, structural elements,
and objects contained in the environment. The Topological Graph, instead, is created in
order to represent the information needed by the robot for navigating and acting in the
environment, associating each node of the graph to a cell of the Cell Map. A final repre-
sentation of the robot’s knowledge is shown in Fig. 3, while a more detailed description
about the representation, its building algorithms and the knowledge acquisition process
can be found in [15].

Fig. 3: Semantic map of a domestic environment. The Topological Graph is depicted on top of
the Cell Map and the objects in it. The metric map is also depicted in the background.

Given the various kinds of knowledge represented in the Cell Map, various forms of
reasoning can be performed. To this end, all the knowledge included in the Cell Map and
in the Topological Graph is automatically translated into Prolog assertion predicates. In
particular, each element of the Cell Map is represented with a predicate

cellIsPartOf(XCoord, YCoord, AreaTag)

and each object is represented with the two predicates

object(Id, XCoord, YCoord, Properties),
Type(Id, Type).
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For example, the knowledge of a white plug located in the cell with grid map coordi-
nates 45, 67 belonging to the corridor area will be represented with the three predicates

cellIsPartOf(45, 67, corridor),
object(plug1, 45, 67, color-white),
objectType(plug1, plug).

The knowledge stored in the Topological Graph is instead represented as an acyclic
graph in Prolog with the predicates

node(Id, XCoord, YCoord),
arc(Id1, Id2),

respectively for the nodes and the arcs of the graph. Having translated in Prolog all
the knowledge stored in the representation built with the previously described method,
performing certain kind of inference on it becomes straight forward, as it is shown in
the next section.

4 Reasoning on the Representation

In this section, we show how the commands uttered by a user are understood by our
robot, by qualitatively reasoning about orientations and distances of objects in the envi-
ronment. In particular, we describe the processing chain applied to the input command
(Fig. 4), first describing the natural language processing operations performed on it,
while later showing the qualitative reasoning method adopted.

Fig. 4: Processing chain applied to the commands uttered by a user, starting from the ASR and
ending with the command execution.

Starting from the sentence uttered by the user, the processing chain for spoken
commands follows a well-established pattern: based on a language model built using
SRGS2, the system tries to match the output of the ASR within a knowledge base of
frames, which represent the commands that can be executed by the robot. According to
the results of such a matching, either the processed command is sent to the grounding
engine, or an interaction with the user is started, in order to ask for clarifications or for
a new command. When a frame is correctly instantiated and an output can be passed to
the grounder, the Sentence Analyzer serializes it into a command keyword and a list of

2 http://www.w3.org/TR/speech-grammar/
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tokens representing the specification of the action to be performed. For example, if the
command uttered by the user is “go in front of the socket on the right of the closet", the
output received by the grounder will be the keyword “GO_FRONT", in addition to the
list of tokens “[to, the, socket, on, the, right of, the, closet]".

The output of the Sentence Analyzer is then passed to the Grounding Engine. By
using definite clause grammars implemented in Prolog, we parse the input tokens in or-
der to extract the located object, the reference object and the spatial relation that relates
them. Having extracted these three elements from the user command, the system tries to
ground them by querying the knowledge base and the spatial reasoner: two objects that
fall in the categories of the located object and the reference object are searched, filtering
the results by requiring their positions to agree with the relation specified by the user.
To better explain this process, if the list “[to, the, socket, on, the, right of, the, closet]"
is received as an input, the tokens “socket", “right of" and “closet" are identified as the
located object, the spatial relation and the reference object respectively. The knowledge
base is then queried for all the sockets and closets known in the environment with their
positions. Finally, the known objects are filtered by the spatial reasoner that discards all
the sockets that are not on the right of the closet.

In order to perform this latter operation, by exploiting the representation previously
described, we built a spatial reasoner with an intrinsic reference frame. Three vicinity
relations (near, next to and nearest), their three opposite relations (far, not next to and
furthest) and four orientations (behind, in front, on the right and on the left) have been
implemented. In particular, by defining CLoc and CRef the set of cells belonging to the
cell map that include a portion of the objects Loc and Ref respectively, we say that
Loc has a vicinity relation with Ref if and only if:

d(centroid(CLoc), centroid(CRef )) < t

where d is the euclidean distance, t is a threshold constant and centroid(x) is a function
that takes a set of cells x in input and returns the coordinates of its centroid in the
metric map coordinate system. By specifying a threshold constant for both the relations
“near" and “next to", respectively tnear and tnext, we therefore define the six distance
relations (the nearest attribute is computed finding the object that minimizes the above
defined distance). In order to define the orientation relations, instead, analogously to
[12], we exploited the “intrinsic front side" of the objects (identified with the normal
n̂ of the surface tagged by the user during the knowledge acquisition phase previously
described). Specifically, we have used it to define a forward orientation, later deriving,
by rotating clock-wise, respectively the concept of left, backwards, and right regions,
as shown in Fig. 5. By defining the general concept of directions, we adopted the cone-
based approach [2] to explicate the four directional relations, starting from the centroid
of the reference object, as shown in Fig. 5. As for the definition of vicinity, in order
for two object Loc and Ref to be related from a relation R, by defining ARef

R the area
corresponding to a region in the direction R with respect to the reference object Ref
(e.g. Acloset

right is the area on the right of the closet), we require that:

centroid(CLoc) ∈ ARef
R

where, again, the centroid(x) is a function that takes a set of cells x in input and re-
turns the coordinates of its centroid in the metric map coordinate system. Note that, if
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the centroid of the located object corresponds to the centroid of the reference object,
we consider them connected with all the four directional relations, since our represen-
tation is an abstraction of the physical world. After applying the cone-based approach
to our representation, by collapsing the represented objects in their centroid, all the
properties derived for this approach from the theory are automatically inherited by our
system. Finally, by exploiting the representation of the environment automatically built
two advantages can be identified: The objects can be automatically inserted in the en-
vironment representation through the interaction with the user; The qualitative spatial
reasoning can be performed on points (the centroid of the cells representing the object
in the Cell Map), allowing for an easy and straightforward approach.

Fig. 5: Reference frame adopted for the implemented spatial reasoner. The image shows how the
concept of “near" and “next to" have been implemented as well as how regions in the different
direction have been identified through the cone-based approach.

5 Experimental Evaluation

Several tests have been conducted in order to demonstrate the improvements that quali-
tative spatial reasoning can determine in grounding the commands given by the users to
a robot, as well as the efficacy of implementing such an approach on a real robot. Our
validation work has been therefore focused on two different kinds of experiments.

The purpose of the first experiment was evaluating the impact of a qualitative spatial
reasoner on an agent whose amount of knowledge continuously grows, as well as the
influence of the already available knowledge on such a reasoning. The goal of this work
was enabling a real robot to disambiguate the instructions given by a human-being on
the basis of the relations between objects in the environment. Such an evaluation has
been carried out considering the number of unambiguous and ambiguous commands
(i.e., commands referring to more than one object with a specific spatial property, see
Fig. 6) grounded by the agent. Indeed, when full knowledge about the environment is
available, grounding ambiguous commands would mostly lead to the execution of the
wrong action with respect to the user expectation, while all the unambiguous commands
are supposed to be correctly grounded.

We therefore analyzed first the impact of the presence or absence of the qualita-
tive spatial reasoner (QSR) and then the amount of knowledge available to the agent.
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Fig. 6: Setting in which the command “go to the socket near the closet" has an ambiguous mean-
ing. The command, in fact, could be grounded with either the socket on the left or the one on the
right of the image, since they are both near the closet.

In detail, we first asked each member of a group of 26 students from the First Örebro
Winter School in Artificial Intelligence and Robotics3 to provide a set of 3 commands
containing spatial relations between objects, by looking at pictures of the test envi-
ronment. Then, from the 78 acquired commands, we extracted two types of tasks: 28
ambiguous and 50 unambiguous. By gradually adding knowledge about the objects in-
side the knowledge base of the agent, we therefore measured how many commands
were grounded. We repeated the experiment for both categories of commands, with or
without the qualitative spatial reasoner. Since the curves depend on the order of the ob-
jects inserted in the knowledge base, the experiment has been performed five times in
order to obtain its average trend (Fig. 7). In case the QSR was not present (first curve),
only the objects in the environment, whose category has a unique member, were cor-
rectly identified. For example, since we had two closets in the test environment, there
was no way of distinguish them without exploiting spatial relations. By comparing the
first and the second curve in the image, it can be noticed that the presence of the QSR
does not greatly affect their trend, when a little amount of knowledge is available, due
to the absence of exploitable spatial relations between objects. On the contrary this is
not true when substantial environmental information is accessible. In this case, Curve 2,
3 and 4 show that the QSR is essential for grounding all the unambiguous commands,
lowering and eventually zeroing the errors that derive from the grounding of ambiguous
ones (which should not have been grounded). In order to better understand this point,
suppose you have a test environment where two trash bins are in front of two different
windows: by not knowing the existence of one of the two trash bins, if the ambigu-
ous command “go to the trash near the window” is given, the robot will erroneously
ground the command with the only trash known. Differently, if both trashes are known
the robot, it will correctly ground both objects, warning the user of such an ambiguity.

The goal of the second experiment was, instead, to understand the limitations of
the proposed approach rather than to perform a usability study. In detail, we do not
want to analyze in a quantitative manner the obtained results but, our intention is to
identify the kind of errors perceived by non-expert users during the interaction and

3 http://aass.oru.se/Agora/Lucia2013/
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Fig. 7: Mean number of grounded commands with respect to the number of objects known in the
environment, added in a random order. Three different curves (“mixed commands without QSR”,
“mixed commands with QSR”, “not ambiguous commands with QSR” and “ambiguous com-
mands with QSR”), respectively, report the results obtained by giving to the robot the complete
(mixed) set of commands, only unambiguous commands or only ambiguous commands. As ex-
pected, with a qualitative spatial reasoner and a complete knowledge about the relevant elements
of the environment, the robot correctly grounds only the not ambiguous commands.

the grounding process. To this end, we implemented our method on a robot, able to
interact with a user through natural language: in this setting we measured the agreement
between the user expectations and the grounding performed by the robot. In particular,
we first produced a Cell Map by carrying the robot on a tour of the environment and
tagging 23 objects within the environment, as well as the doors and the functional areas
in it, through an online augmentation of the Map. Then, we asked 10 different non-
expert users to assign 10 distinct tasks to the robot, asking them to evaluate if the robot
correctly grounded their commands, meeting their expectations. The commands have
been directly acquired through a Graphic User Interface, in order to avoid possible
errors due to misunderstandings from the speech recognition system. In detail, the users
had the possibility to choose the action to be executed by specifying the located object,
the reference object and one of the 10 spatial relations implemented in our reasoner.
Table 1 shows that approximately 80% of the uttered commands have been correctly
grounded. The remaining 20% of the wrongly grounded commands where due to two
different phenomena:

– The command given was ambiguous, requiring other proprieties, in addition to di-
rection and distance, to identify the object;

– The users did not behave coherently during the interaction with the robot, by vary-
ing their concept of vicinity or by adopting different reference frames.

While the first issue is intrinsic to the nature of the command and it can be solved by
exploiting other proprieties (e.g., the color), the second one could be addressed by using
adaptive parameters, learnt over time through the interaction with the user. For example
we noticed that the concept of vicinity for a reference object varies with the number
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of objects around it. By keeping track of the feedbacks given by the user when the
system wrongly grounds a command, the change of the vicinity concept (represented
in our system with the two thresholds tnext and tnear) over different settings could be
modelled. Moreover, the well established concept that the reference frame adopted for
spatially relating objects changes with respect of where the user is standing ([16] and
[17]), could be addressed by dynamically changing the robot’s reference frame based
on the position of the human. Such solutions, however, go beyond the scope of this
paper.

Table 1: Results of the second experiment. Ten different users have been asked to give ten dif-
ferent tasks to the robot, using spatial relations about distances and directions. The table shows
the number of correctly and wrongly grounded commands with respect to the expectations of the
users.

User Correctly Grounded Wrongly Grounded
Commands Commands

1st 7 3
2nd 8 2
3rd 10 0
4th 6 4
5th 8 2
6th 8 2
7th 10 0
8th 7 3
9th 9 1
10th 8 2

Total 81 19

6 Conclusion

In this paper we have presented a method for applying qualitative reasoning about di-
rections and distances on real robots. In particular, we have shown how a suitable rep-
resentation of the environment can be automatically extracted from the Metric Map, by
creating a grid-based abstraction of the world with the aid of the user. By embedding in
such a representation a high-level description of the objects, qualitative spatial reason-
ing can be performed by the robot to accomplish tasks in real scenarios. Indeed, this is
an important task, for performing a further step in the direction of implementing effec-
tive human-robot interaction. The proposed approach has been validated by consider-
ing the number of grounded commands with respect to different amounts of knowledge
available to the robot, as well as with the presence and the absence of a qualitative spa-
tial reasoner. From such an analysis the essential role of a qualitative spatial reasoner
for grounding spoken commands has been pointed out. Finally, we have performed a
second experiment to identify the major issues that occur during the grounding process.
Specifically, several non-expert users have been required to give specific commands
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to the robots, comparing their expectations with the output of the system. Two issues
intrinsically embedded in the human-robot interaction have been identified: the am-
biguity of certain commands and the incoherence of reference frames adopted by the
users. Solving these issues, as well as using the proposed representation for a further
improvement of the reasoner (e.g., considering different kind of commands that exploit
other properties to identify objects), will be the focus of our future work. Moreover, we
are planning to extend our approach in a 3D representation.
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