US 20230068323A1

a2 Patent Application Publication o) Pub. No.: US 2023/0068323 A1

a9 United States

Gemignani et al.

43) Pub. Date: Mar. 2, 2023

(54) CAPABILITIES FOR ERROR
CATEGORIZATION, REPORTING AND
INTROSPECTION OF A TECHNICAL
APPARATUS

(71) Applicant: Magazino GmbH, Miinchen (DE)

(72) Inventors: Guglielmo Gemignani, Miinchen (DE);
Markus Grimm, Miinchen (DE);
Moritz Tenorth, Miinchen (DE)

1) Appl. No.: 17/890,875

(52) US.CL
CPC ... B25J /1602 (2013.01); GOSB 23/0297
(2013.01); GOSB 2223/06 (2018.08)

7 ABSTRACT

An apparatus state data structure for controlling a technical
apparatus includes at least one capability data field and at
least one associated data field. Each capability data field
indicates a respective functionality of the technical appara-
tus. Each associated data field is associated with a respective
capability data field. The at least one associated data field

(22) Filed: Aug. 18, 2022 includes at least one required component state data field and
at least one required diagnostic data field. Each required
(30) Foreign Application Priority Data component state data field indicates a configuration of a
respective component required for the functionality of the
Aug. 31,2021 (EP) oo 21194167 capability data field associated with the respective required
Publication Classification component state data field. Fach required diagnostic data
field indicates a respective operational state of a component
(51) Int. CL of the technical apparatus required for the functionality of
B25J 9/16 (2006.01) the capability data field associated with the respective
GO5B 23/02 (2006.01) required diagnostic data field.
100 10
[Robot State }; }
110
A 110
Capability 1] EmE [Capability N
120 120
— Required Diagnostics] — Required Diagnostics
L 130 L)130

— Required Component State
{ 140

— Related Ciritical Events

— Required Component State
\ 4140

— Related Critical Events

Mar. 2, 2023 Sheet 1 of S US 2023/0068323 Al

Patent Application Publication

N

OvT

OET,

0cTt

T "614
SJUSAZ |edlldD paje|ay T SJUSA |eDJD paje|ay _l
) ovT)
93e1s juauodwo) padinbay 93]S jJusuodwo) paJdinbay —
4 0€T ¢)
sonsoubeiq palinbay — sonsoubeiq padinbay —
0¢T1
Y Y
N Ajigeded g mEn ﬁ T Apgeded
TT
0 e OTT
W\ 93e3Ss jJ0q0Yy Q

00T

US 2023/0068323 Al

v_wwﬂ IXaN 104 JEM 1C
02z

sySe W a)nNoaxg

817

Mar. 2, 2023 Sheet 2 of 5

aouanbas joog

oHNW\

\Hﬁsm J0qoy 199 P
0z

Patent Application Publication

US 2023/0068323 Al

Mar. 2, 2023 Sheet 3 of 5

Patent Application Publication

€ 614

0cE

/

san|iqede) buissi s|pueH

.VHM\.\V Jse] ©8lndaXx3

:

cre 0TE€

US 2023/0068323 Al

Mar. 2, 2023 Sheet 4 of 5

Patent Application Publication

b "b14
(q)

"([(,eT9eTTRAR ®BlED ISSET/

,) J0x1I5 OT3soubeTp]

‘puTssTw elep IoseT)soTiradoad uoTieurTdx® JOIIS:SUOTIRURTAXD IOIID
* (,eaep butystTgnd 10U ©IB SISSET °YL,

‘puTssTw eaep goseT)uoTadTiosop uoTleueTdxe I0iI9:suoTleURTdXS IOIID
*(TO0T‘PUTSSTW eaPp I9SeT)uoTleurTdXS JIOIIS8 ST:SUOTjeURTdX® IOIID

(e) ov

©STeJ :UIeM UO TTeJ

oNnI] :9Te3s uo TTIeJ

STRTIRAR B3IPP IOSET/ :9WeU OT3souberp
STeTTRAR BlPp ISSET :8Weu -

:soTlsoubetp peaiTnbax
21ebTARU URD :OWEU

US 2023/0068323 Al

Mar. 2, 2023 Sheet 5 of 5

Patent Application Publication

passaid uonng |euonetado G "b14
Aousbiswg /D Jojouw
Jamol :+Q
jeuonyelado o1
Joj0w
Jaddun :¢Q \
Jo10W Jaddub
Ut JUSULINDIBAD C@QO
-13 IENCII ol
|euoiaelado |euonelado [euoneltado
Jojow 91e)s 19Xd0p Jojow 4ojow T
Jdaddueg) :gQ ur :€d B Joamo] :zda SALQ Td
A0 MO 93]S P3{o0p paso|d
1addun :9) I/— Jaddus o ur :zd H SEYIVTIES o) H.
v V¥ H,ﬁe \
10qgoJ Ul Jadd — — — _
— — Yoid ued JoM0] uinl ued SALIPp Ued
-1u6 aAow ued
A
\ 7 /
doTTt J0TT

231e1S 10q0Y

01T VOTT

00T i

US 2023/0068323 Al

CAPABILITIES FOR ERROR
CATEGORIZATION, REPORTING AND
INTROSPECTION OF A TECHNICAL
APPARATUS

RELATED APPLICATIONS

[0001] The present application claims priority to European
Patent Application No. EP21194167, filed Aug. 31, 2021,
the contents of which are hereby incorporated by reference
in their entirety.

BACKGROUND INFORMATION

[0002] The present disclosure generally relates to the
operating of technical apparatuses, such as, autonomous
vehicles, e.g., robots. In particular, the present disclosure
relates to methods, systems and devices using a state repre-
sentation of the technical apparatus for controlling the tech-
nical apparatus. The technical apparatus can preferably be
an autonomous vehicle, e.g., a robot. However, it will be
understood that principles of the present disclosure apply
similarly to other technical apparatuses, such as, stationary
robots or apparatuses, €.g., robot arms with sensors and
actuators. In general, the technical apparatus can be any
apparatus that may gain or lose capabilities depending on
their status.

[0003] Generally, robots operate in dynamic environments
facing complex situations. As such, it is particularly impor-
tant for robots to be able to reason on themselves and recog-
nize anomaly situations with respect to normal operations.
With this ability, the robots can signal any situation that they
cannot handle on their own, explain what is currently hin-
dering them from achieving their assigned tasks, and, in
some cases, ask humans for help to restore a normal opera-
tion state.

[0004] An anomaly situation can be an anomaly regarding
the environment in which the robots are operating or an
anomaly regarding the robot itself. The former type of
anomalies refers to situations where the robot is not able to
achieve a given task due to a particular wrong configuration
of the environment. Examples of such anomalies are: the
robot cannot navigate to a certain requested position
because the path to it is blocked, or the robot cannot pick
up an item because it is not found where it was supposed to
be. The second type of anomaly refers, instead, to situations
where the robot has something hindering it to complete a
task. It could be that the robot has a malfunctioning software
or hardware component, a particular state that prevents it to
operate, or a critical situation of danger detected that may
require the immediate interruption of any movement.
[0005] For example, malfunctioning software or hardware
components preventing operation may include the following
anomaly situations: the robot could have lost the connection
to a motor or to a camera, the robot could be delocalized due
to an issue in the localization algorithm, the robot could
have a dirty sensor causing wrong readings, or the robot
could have a broken battery that prevents operation. Some
exemplary anomaly situations wherein the robot or robot
component state prevents operation may include: a safety/
emergency stop mechanism might be preventing the robot to
operate, or the battery might be discharged and needs to be
recharged. Critical situation preventing operation may for
example include: something got hit by the robot while oper-
ating resulting in an overcurrent event detected by a motor,

Mar. 2, 2023

or a particular motor might not be following the requested
commands.

SUMMARY

[0006] The present disclosure, is particularly focused on
categorizing, reporting and introspecting the second type
of anomalies, which can also be referred to as robot errors.
[0007] Present technologies in the art typically make use
of Diagnostic System for Robots Running ROS, such as, for
example, the opensource project in https://www.ros.org/
reps/rep-0107.html. However, such systems merely focus
on error identification and reporting.

[0008] Another concept in literature is “The RoboEarth
language: Representing and Exchanging Knowledge about
Actions, Objects, and Environments” by Moritz Tenorth,
Alexander Perzylo, Reinhard Lafrenz and Michael Beetz,
from the Department of Informatics at Technische Universi-
tat Minchen (retrieved from: https:/ias.in.tum.de/_media/
spezial/bib/tenorth12roboearth.pdf). In this work, depen-
dencies of actions on capabilities are provided using a
rule-based approach, but the capabilities are considered sta-
tic and not calculated at runtime from the current robot state.
[0009] In light of the above, features of the present disclo-
sure seek to overcome or at least alleviate the shortcomings
and disadvantages of the known implementations. It is an
object of the features of the present disclosure to provide
an improved representation of the state of a technical appa-
ratus, to utilize it for controlling the technical apparatus and
to provide a basis to introspect the technical apparatus.
[0010] These objects are met by the robot and the method
of the present disclosure.

[0011] In a first aspect the present disclosure relates to a
method of operating a technical apparatus, which can for
example be a mobile robot. The method comprises using
an apparatus state data structure, which can also be referred
to as a vehicle state data structure (e.g., in case the technical
apparatus is an autonomous vehicle) or as a robot state
representation (e.g., in case the technical apparatus is a
robot), for controlling the technical apparatus. The appara-
tus state data structure comprises at least one capability data
field and at least one associated data field. Each capability
data field indicates a respective functionality of the technical
apparatus and each associated data field is associated with a
respective capability data field.

[0012] The technical apparatus may be an autonomous
vehicle.

[0013] In a second aspect, the present disclosure relates to
a system comprising the technical apparatus and a memory
device configured to store the apparatus state data structure
for controlling the technical apparatus.

[0014] In a third aspect, the present disclosure relates to a
computer program product comprising instructions which,
when the program is executed by a computer, causes the
computer to carry out the method of the present disclosure.
[0015] In a fourth aspect, the present disclosure relates to a
computer readable storage medium having stored thereon
the computer program product of the present disclosure.
[0016] In a fifth aspect, the present disclosure relates to a
computer readable storage medium having stored thereon
the apparatus state data structure.

[0017] In some embodiments, the technical apparatus can
be an autonomous vehicle. In such embodiments, the tech-
nical apparatus can be referred to as an autonomous vehicle.

US 2023/0068323 Al

Similarly, the apparatus state data structure can be referred
to as a vehicle state data structure.

[0018] Again, it will be understood that principles of the
present disclosure apply similarly to other technical appara-
tuses, such as, stationary robots or stationary apparatuses,
e.g., robot arms with sensors and actuators.

[0019] In general, the technical apparatus can be any appa-
ratus that may gain or lose capabilities depending on their
status. The technical apparatus may be an autonomous
vehicle.

[0020] In the following, features of the present disclosure
are discussed. For the sake of brevity, some of these features
may be discussed in relation to only one of the aspects of the
present disclosure. However, it will be understood that the
following features of the present disclosure apply mutatis
mutandis to each aspect of the present disclosure.

[0021] The features of the present disclosure may have
multiple advantages. In particular, the apparatus state data
structure of the present disclosure may allow for a compact
representation or encoding of the apparatus state. [t may also
allow for efficiently defining errors of the technical appara-
tus, the apparatus state and their relation to represent anoma-
lies regarding the technical apparatus.

[0022] In addition, the features of the present disclosure
may facilitate categorizing and explaining the causes of
the errors happening on the technical apparatus, for exam-
ple, with a reasoning system.

[0023] Further still, the features of the present disclosure
may allow for efficiently checking for anomalies while the
technical apparatus executes task(s). In particular, the fea-
tures of the present disclosure can allow classifying the
errors, recovering from them and reporting the errors, e.g.,
to an external controller.

[0024] Simply put, the features of the present disclosure
may facilitate determining which capabilities of the techni-
cal apparatus can be present (or enabled) at any moment in
time. The features of the present disclosure allow for error
categorization, reporting and introspection. Overall, the fea-
tures of the present disclosure may increase the efficiency
and safety of operation of a technical apparatus.

[0025] In some embodiments, the at least one associated
data field can comprise at least one required component state
data field. Each required component state data field can indi-
cate a configuration of a respective component required for
the functionality of the capability data field associated with
the respective required component state data field. That is,
cach capability data field can be associated with at least one
respective component state data field. This can be advanta-
geous as components of the technical apparatus can be oper-
able in multiple states. For example, a gripper can be in an
engaging (i.e., gripping) state or it can be in a non-engaging
state. Certain functionalities may require that certain com-
ponents be in certain states. For example, the functionality
of gripping an item may require that the gripper is in a non-
engaging state. The features of the present disclosure can
allow for defining, representing and encoding such require-
ments (i.e., dependencies between functionalities and com-
ponent states) based on the association of capability data
fields with component state data fields.

[0026] In some embodiments, the at least one associated
data field can comprise at least one required diagnostic data
field. Each required diagnostic data field can indicate a
respective operational state of a component of the technical
apparatus required for the functionality of the capability

Mar. 2, 2023

data field associated with the respective required diagnostic
data field. That is, each capability data field can be asso-
ciated with at least one respective required diagnostic data
field. This can be advantageous as components of the tech-
nical apparatus may comprise errors or may be non-opera-
tional. For example, a drive motor may not be functioning.
Again, certain functionalities may require or may be per-
formed at least in part by certain components. For example,
the functionality of moving the technical apparatus may be
performed by its drive motor. The features of the present
disclosure can allow for defining, representing and encoding
such requirements (i.e., dependencies between functional-
ities and components) based on the association of capability
data fields with required diagnostic data fields.

[0027] In some embodiments, the at least one associated
data field can comprise at least one event storage data field.
Each event storage data field can comprise data relating to
an event relevant for the respective functionality of the cap-
ability data field associated with the respective event storage
data field. That is, in some instances functionalities may
become disabled by an occurrence of certain events. For
example, the gripper while positioning an item may collide
with another object. In such cases, it can be advantageous to
check the gripper (e.g., manually) before resuming opera-
tion. Although the collision may cause an overcurrent in
the respective motor of the gripper, as soon as the collision
is over, the motor of the gripper goes back into its normal
state. Therefore, diagnostic of the gripper will return an
operational state, hence making the collision undetectable
otherwise (i.e., merely using the above data fields). How-
ever, the features of the present disclosure can store data
regarding critical events (e.g., collisions). The event storage
data field can comprise such data. Therefore, the features of
the present disclosure can allow for defining, representing
and encoding dependencies between functionalities and cri-
tical events based on the association of the capability data
fields with event storage data fields.

[0028] The event storage data field can comprise a time-
stamp, an event name and/or an event description.

[0029] Each capability data field can comprise a capability
key and a capability value. The capability key can comprise
a unique identifier corresponding to the respective function-
ality of the technical apparatus and the capability value can
indicates a status of the functionality. For example, the cap-
ability key can be of a string data type and the capability
value can be of a Boolean data type.

[0030] More particularly, the capability value can indicate
a presence or absence (i.e., the availability) of the function-
ality. That is, the capability value can indicate whether a
functionality is enabled or disabled.

[0031] Each capability data field can indicate the respec-
tive functionality of the technical apparatus based on each
associated data field associated with the respective capabil-
ity data field. As discussed, the features of the present dis-
closure can allow defining, representing and encoding
requirements for different functionalities of the technical
apparatus by associating capability data fields with respec-
tive associated data fields.

[0032] Each required component state data field can com-
prise a component key and a component state value. The
component key can comprise a unique identifier correspond-
ing to the respective component and the component state
value indicates the configuration of the component. Both

US 2023/0068323 Al

the component key and the component state value can be of
a string data type.

[0033] In addition, the component state data field can
comprise a timestamp, which can indicate the time at
which the respective component has assumed the indicated
component state value.

[0034] Each required diagnostic data field can comprise a
part of an output of a diagnostic routine.

[0035] The method can therefore comprise executing the
diagnostic routine.

[0036] In some embodiments, the diagnostic routine can
be part of a general system diagnostic routine of the techni-
cal apparatus. Alternatively, the diagnostic routine can be a
general system diagnostic routine of the technical apparatus.
The general system diagnostic routine can generate a
respective operational state for each component of the tech-
nical apparatus.

[0037] The required diagnostic data field can comprise a
timestamp, which can indicate the time at which the respec-
tive component is in the indicated operational state. It can
further comprise a status data field. The status data field can
comprise different constants indicating the operational state
of the apparatus. For example, the status data field can com-
prise a respective constant indicating different states, such
as, “OK”, “WARN”, “ERROR” and “STALE”. It can
further comprise variables for storing the respective con-
stant depending on the state. It can further comprise vari-
ables of a string data type for indicating an ID of the com-
ponent, to which the diagnostic relates, a name of the
diagnostic and a diagnostic message.

[0038] In some embodiments, data relating to critical
events can be stored in a database. That is, the method of
the present disclosure can comprise storing in a database
data relating to critical events. The system of the present
disclosure can further comprise the database. Logging data
related to critical events can facilitate identifying error
causes, introspection and/or missing functionalities that
can be caused by such events. This can be advantageous,
as some critical events (e.g., collisions) may leave a trace
only during their occurrence, thus making it challenging or
even impossible to detect them after they occur.

[0039] In such embodiments, each event storage data field
can comprise at least one entry of the database.

[0040] The method can comprise triggering storage in the
database of the data relating to critical events based on an
output of at least one sensor of the technical apparatus, for
example, when the output of the at least one sensor is out-
side a respective predetermined normal range. That is, the
technical apparatus can comprise at least one sensor, typi-
cally a plurality of sensors. An output of at least one of the
sensors can trigger the storage in the database of the data
relating to critical events. Such data may for example
include a timestamp, the sensor output, the name (or ID)
of the sensor and/or a location of the sensor. For example,
in the event of the gripper colliding with another object, a
sensor provided therein may sense the current drawn by the
motor. If this current exceeds a predetermined threshold
value, storage of data relating to this event can be stored in
the database.

[0041] Storing in a database data relating to critical events
can comprise storing data indicative of a trigger of the sto-
rage in the database of the data relating to critical events and
data indicative of a task that the technical apparatus was
executing when the trigger occurred.

Mar. 2, 2023

[0042] In some embodiments, each capability data field
can be associated with at least two associated data fields
comprising at least one required state data field and at least
one required diagnostic data field. This can facilitate defin-
ing, representing and encoding multiple requirements for a
functionality.

[0043] Further still, in some embodiments, each capability
data field can comprise at least three associated data field
comprising at least one required state data field, at least
one required diagnostic data field and at least one event sto-
rage data field.

[0044] In some embodiments, the apparatus state data
structure can be an apparatus state tree structure, wherein
the apparatus state tree structure comprises a plurality of
nodes and a plurality of edges connecting the nodes. That
is, the apparatus state data structure can be implemented as a
tree data structure. In general, using a hierarchical data
structure, such as the tree, can be advantageous as it can
allow for efficiently encoding the associations, in particular
the dependencies, between the different data fields of the
apparatus state data structure.

[0045] That is, in such embodiments, each of the data
fields can be a node of the tree structure. More particularly,
each capability data field can be a capability node and each
associated data field can be a capability child node.

[0046] Moreover, each associated data field can be asso-
ciated with a respective capability data field such that each
associated data field can be a child node of the respective
capability data field, the respective capability data field thus
being the parent node of the respective capability child
node.

[0047] The tree structure can comprise a root node and
wherein each of the capability nodes can be a child node
of the root node.

[0048] In some embodiments, the apparatus state data
structure can be used to determine the state of the technical
apparatus. That is, the apparatus state data structure can be
configured to be indicative of the state of the technical appa-
ratus. More particularly, the apparatus state data structure
can be configured to be indicative for each functionality of
the technical apparatus whether it is present (i.e., enabled) or
missing (i.e., disabled).

[0049] The method can further comprise determining a
state of the technical apparatus using the apparatus state
data structure. Determining a state of the technical apparatus
can comprise determining for each functionality of the tech-
nical apparatus whether it is present or missing.

[0050] In some embodiments, the method can further
comprise determining a cause for a missing functionality
of the technical apparatus using the apparatus state data
structure. That is, the apparatus state data structure can be
used to determine a cause for a missing functionality. This
can be advantageous as it can facilitate determining further
actions for recovering the missing functionality and/or
allowing the technical apparatus resume operations.

[0051] The cause for the missing functionality can be out-
put. This can comprise providing the cause to another pro-
cess that can be configured to recover the missing function-
ality. Alternatively or additionally, outputting the cause for
the missing functionality can comprise providing it to an
operator.

[0052] In some embodiments, the method can comprise
recovering a missing functionality of the technical apparatus
using the apparatus state data structure. That is, the appara-

US 2023/0068323 Al

tus state data structure can be configured to facilitate not
only identifying a missing functionality but also recovering
the missing functionality.

[0053] In some embodiments, a reasoning system can be
utilized to determine a cause for a missing functionality.
[0054] The reasoning system can be configured to deter-
mine the cause for the missing functionality based on each
data field of the apparatus state data structure.

[0055] The reasoning system can be implemented using
logic programming. More particularly, the reasoning system
can comprise logical rules (i.e., predicates) configured to
determine the cause for the missing functionality. In some
embodiments, the logical rules can be configured to categor-
ize the causes for the missing functionality.

[0056] That is, the reasoning system can comprise a plur-
ality of predicates which allow for robot state introspection
by utilizing the apparatus state data structure. The reasoning
system can comprise capability predicates, critical event
predicates, component state predicates and diagnostic predi-
cates. Below a non-exhaustive list of predicates is provided.
[0057] For example, one of the capability predicates can
be configured to determine whether a capability is present. It
can take as input a string representing the name of a capabil-
ity and can evaluate to true if a capability with the name
passed as input is enabled in the apparatus state data struc-
ture and can evaluate to false otherwise.

[0058] One of the critical event predicates can be config-
ured to determine whether a particular critical event has
occurred. It can take as input a string representing the
name of a critical event and can evaluate to true if a critical
event with the name passed in input is present in the appa-
ratus state data structure and can evaluate to false otherwise.
[0059] Another one of the critical event predicates can be
configured to determine whether a critical event has
occurred. It can evaluate to true if a critical event has
occurred and to false otherwise.

[0060] One of the component state predicates can be con-
figured to determine whether a component is in a certain
state. It can take as input a string representing a component
state name and can evaluates to true if a component state
with the name passed as input is present in the apparatus
state data structure and can evaluate to false otherwise.
[0061] Another one of the component state predicates can
be configured to determine whether a component state
required for a capability is missing. It can take as input a
string representing a component state name. It can evaluate
to true, if a capability requires the component state with the
name passed as input and such a component state is not part
of the apparatus state data structure. It can evaluate to false
otherwise.

[0062] One of the diagnostic predicates can be configured
to determine the state of the diagnostic. It can take a diag-
nostic name and state as input and can evaluate to true if the
input diagnostic is in the input state and can evaluate to false
otherwise.

[0063] The logical rules of the reasoning system can com-
prise logical operations on the data fields of the apparatus
state data structure.

[0064] Hence, the reasoning system can be configured to
receive the apparatus state data structure as input. It can
further perform operations, e.g., logical operations, on the
data fields of the apparatus state data structure to determine
a cause for a missing functionality.

Mar. 2, 2023

[0065] The method can further comprises using an execu-
tor application.

[0066] The executor application can be configured for
controlling the mobile robot. More particularly, the executor
application can be configured to control the execution of
different tasks of the technical apparatus.

[0067] The executor application can be, e.g., a state
machine executor application or a behavior tree executor
application.

[0068] The executor application can determine the state of
the technical apparatus using the apparatus state data
structure.

[0069] The executor application can determine to execute
tasks based on the determined state of the technical appara-
tus. That is the executor application can be configured to
utilize the apparatus state data structure to determine the
state of the technical apparatus and based thereon the execu-
tor application can determine to execute tasks. This can be
advantageous as it can allow the executor application to
determine whether required capabilities are present prior
and/or while executing a task.

[0070] In some embodiments, the executor application can
execute a task and can simultaneously determine the state of
the technical apparatus using the apparatus state data struc-
ture. That is, the executor application can determine at run
time (i.e., while executing a task) whether required capabil-
ities are present.

[0071] Upon determining that a functionality is missing,
the executor application can call a missing capability hand-
ler routine to determine a handling routine. The handling
routine can comprise recovering the missing capabilities.
[0072] The handling routine may also comprise generating
a request for manual support. This can be particularly
advantageous in case the handling routine may not be able
to recover a missing capability.

[0073] The executor application may also call the reason-
ing system to determine a cause for a missing functionality,
upon determining that a functionality 1s missing. This can be
advantageous as it can allow the executor application to
obtain more detailed information regarding the missing
functionality. Therefore, the executor application can make
a more accurate determination about the next task to exe-
cute. For example, calling the reasoning system may facil-
itate determining an accurate handling routine for recover-
ing the missing capability.

[0074] In some embodiments, the missing capability
handler routine can determine the handling routine based
on the output of the reasoning system.

[0075] In some embodiments, the executor application can
comprise a state generator node configured to generate the
apparatus state data structure.

[0076] The state generator node can be a process.

[0077] The state generator node can generate the appara-
tus state data structure periodically. For example, the state
generator node can generate the apparatus state data struc-
ture with a frequency of at least 1 Hz.

[0078] In some embodiments, the state generator node can
generate the apparatus state data structure according to an
adaptive frequency. The adaptive frequency can depend on
at least one of the capability data fields and/or on at least one
of the associated data fields. This can be advantageous, as
when critical events are detected and/or when a diagnostic
turn to an error state, the frequency can be increased.

US 2023/0068323 Al

[0079] The executor application can comprise a plurality
of process nodes. The state generator node can be one of the
process nodes. Another process node can be one that trig-
gers at least one sensor and receives the output of the at least
one sensor. The at least one sensor can, for example, be con-
figured to measure and output data indicative of a configura-
tion and/or operational state of a respective component of
the apparatus. Yet another process node can be one that is
configured to receive (or read) data comprised by at least
one event storage data field. Yet another process node can
be a diagnostic routine. The state generator node can be con-
figured to receive the output of at least one other process
node to generate the apparatus state data structure.

[0080] More particularly, the plurality of process nodes
can be configured to exchange messages with each other.
Such messages can be, e.g., robot operating system (ROS)
messages. The plurality of process nodes can be intercon-
nected with each other via channels that allow them to
exchange messages, hence forming a network of process
nodes. The apparatus state data structure can be such a mes-
sage and it can be published by the state generator node. The
state generator node can retrieve the necessary information
for generating the apparatus state structure via a set of call-
backs that listen on different channels in the network of pro-
cess nodes. The state generator node can publish (i.e., gen-
erate and/or output) the apparatus state data structure with a
minimum frequency of 1 Hz. The state generator node can
publish also at a higher frequency when a sudden change is
detected (e.g., a critical event is received or a diagnostic turn
to an error state).

[0081] In some embodiments, the method can comprise
storing in a memory device the apparatus state data
structure.

[0082] For example, in such embodiments, the state gen-
erator node can be configured to generate and store the appa-
ratus state data structure.

[0083] The method can further comprise storing a respec-
tive timestamp associated to the apparatus state data struc-
ture, wherein the respective timestamp can be configured to
indicate a time of generation of the apparatus state data
structure.

[0084] In such embodiments, the method can comprise
determining a past state of the technical apparatus using a
stored apparatus state data structure. That is, storing the
apparatus state data structure in a database and/or in a mem-
ory device can allow reasoning on the apparatus state data
structure that was recorded at a certain point in the past,
when, for example, an error occurred. This can be advanta-
geous as it can allow to perform an ex post facto analysis
[0085] As discussed, the capability data fields can indicate
respective functionalities of the technical apparatus. Below
some exemplary functionalities are provided.

[0086] One of the at least one capability data field can
indicate a driving functionality of the technical apparatus.
[0087] One of the at least one capability data field can
indicate a navigation functionality of the technical
apparatus.

[0088] One of the at least one capability data field can
indicate an object localization functionality of the technical
apparatus.

[0089] One of the at least one capability data field can
indicate an object manipulation functionality of the techni-
cal apparatus.

Mar. 2, 2023

[0090] The technical apparatus can comprise a drive unit
configured to move the technical apparatus.

[0091] The technical apparatus can comprise a pick up
unit configured to pick up at least one object. The pick up
unit comprises at least one gripper.

[0092] The technical apparatus can comprise a shelf unit
configured to store at least one object.

[0093] The technical apparatus can comprise an emer-
gency button.

[0094] The technical apparatus can comprise a sensor.
Typically, the technical apparatus can comprise a plurality
of sensors.

[0095] The technical apparatus can be configured to pick
up objects. For example, the technical apparatus can be con-
figured to pick up items, e.g., shoe boxes, in a storage
facility.

[0096] The method can be a computer implemented
method.

[0097] The method can be performed by a system com-
prising the technical apparatus and a processor. The system
further can further comprise a memory device.

[0098] The technical apparatus can be a robot.

[0099] In some embodiments, the technical apparatus can
comprise the processor.

[0100] The system of the present disclosure can be config-
ured to carry out the method of the present disclosure.
[0101] The apparatus state data structure stored in the
memory device of the system can comprise any of the fea-
tures of the apparatus state data structure used by the method
of the present disclosure.

[0102] In some embodiments of the system, the technical
apparatus can comprise the memory device.

[0103] The memory device can be configured to further
store the reasoning system.

[0104] The memory device can be configured to further
store the executor application.

[0105] The system further can further comprise a proces-
sor. In some embodiments, the technical apparatus can com-
prise the processor. The processor can be configured to exe-
cute the method.

[0106] The technical apparatus can be a robot.

[0107] The features of the present disclosure are further
described with the following numbered embodiments.
[0108] Below method embodiments will be discussed.
These embodiments are abbreviated by the letter “M” fol-
lowed by a number. Whenever reference is made to method
embodiments, these embodiments are meant.

[0109] MI. A method of operating a technical apparatus,
wherein the method comprises using an apparatus state data
structure for controlling the technical apparatus, wherein the
apparatus state data structure comprises at least one capabil-
ity data field, wherein each capability data field indicates a
respective functionality of the technical apparatus, wherein
the apparatus state data structure comprises at least one
associated data field, wherein each associated data field is
associated with a respective capability data field.

[0110] M2. The method according to the preceding embo-
diment, wherein the at least one associated data field com-
prises at least one required component state data field,
wherein each required component state data field indicates
a configuration of a respective component required for the
functionality of the capability data field associated with the
respective required component state data field.

US 2023/0068323 Al

[0111] M3. The method according to any of the preceding
embodiments, wherein the at least one associated data field
comprises at least one required diagnostic data field,
wherein each required diagnostic data field indicates a
respective operational state of a component of the technical
apparatus required for the functionality of the capability
data field associated with the respective required diagnostic
data field.

[0112] M4. The method according to any of the preceding
embodiments, wherein the at least one associated data field
comprises at least one event storage data field, wherein each
event storage data field comprises data relating to an event
relevant for the respective functionality of the capability
data field associated with the respective event storage data
field.

[0113] MS5. The method according to any of the preceding
embodiments, wherein each capability data field comprises
a capability key and a capability value, wherein the capabil-
ity key comprises a unique identifier corresponding to the
respective functionality of the technical apparatus and the
capability value indicates a status of the functionality.
[0114] M6. The method according to the preceding embo-
diment, wherein the capability value indicates a presence or
absence of the functionality.

[0115] M7. The method according to any of the preceding
embodiments, wherein each capability data field indicates
the respective functionality of the technical apparatus
based on each associated data field associated with the
respective capability data field.

[0116] M8. The method according to any of the preceding
embodiments and with the features of embodiment M2,
wherein each required component state data field comprises
a component key and a component state value, wherein the
component key comprises a unique identifier corresponding
to the respective component and the component state value
indicates the configuration of the component.

[0117] M9. The method according to any of the preceding
embodiments and with the features of embodiment M3,
wherein each required diagnostic data field comprises a
part of an output of a diagnostic routine.

[0118] MI10. The method according to the preceding
embodiment, wherein the method comprises executing the
diagnostic routine.

[0119] M11. The method according to any of the 2 preced-
ing embodiments, wherein the diagnostic routine is part of a
general system diagnostic routine of the technical apparatus.
[0120] MI12. The method according to any of the preced-
ing embodiments with the features of embodiment M9 or
M10, wherein the diagnostic routine is a general system
diagnostic routine of the technical apparatus.

[0121] MI13. The method according to the preceding
embodiment, wherein the general system diagnostic routine
generates a respective operational state for each component
of the technical apparatus.

[0122] MI14. The method according to any of the preced-
ing embodiments and with the features of embodiment M4,
wherein the method comprises storing in a database data
relating to critical events and wherein each event storage
data field comprises at least one entry of the database.
[0123] MI15. The method according to the preceding
embodiment, wherein the method comprises triggering sto-
rage in the database of the data relating to critical events
based on an output of at least one sensor of the technical
apparatus.

Mar. 2, 2023

[0124] M16. The method according to the preceding
embodiment, wherein the method comprises triggering sto-
rage in the database of the data relating to critical events
when the output of the at least one sensor is outside a respec-
tive predetermined normal range.

[0125] M17. The method according to any of the 3 preced-
ing embodiments, wherein storing in a database data relating
to critical events comprises storing data indicative of a trig-
ger of the storage in the database of the data relating to cri-
tical events and data indicative of a task that the technical
apparatus was executing when the trigger occurred.

[0126] M18. The method according to any of the preced-
ing embodiments and with the features of embodiments M2
and M3, wherein each capability data field is associated with
at least two associated data fields comprising at least one
required state data field and at least one required diagnostic
data field.

[0127] M19. The method according to any of the preced-
ing embodiments and with the features of embodiments M2,
M3 and M4, wherein each capability data field comprises at
least three associated data field comprising at least one
required state data field, at least one required diagnostic
data field and at least one event storage data field.

[0128] M20. The method according to any of the preced-
ing embodiments, wherein the apparatus state data structure
is an apparatus state tree structure, wherein the apparatus
state tree structure comprises a plurality of nodes and a plur-
ality of edges connecting the nodes.

[0129] M21. The method according to the preceding
embodiment, wherein each of the data fields is a node of
the tree structure.

[0130] M22. The method according to any of the 2 preced-
ing embodiments, wherein each associated data field is asso-
ciated with a respective capability data field such that each
associated data field is a child node of the respective cap-
ability data field, the respective capability data field thus
being the parent node of the respective capability child
node.

[0131] M23. The method according to the preceding
embodiment, wherein each capability data field is a capabil-
ity node, and each associated data field is a capability child
node.

[0132] M24. The method according to the preceding
embodiment, wherein the tree structure comprises a root
node and wherein each of the capability nodes is a child
node of the root node.

[0133] M25. The method according to any of the preced-
ing embodiments, wherein the method comprises determin-
ing a state of the technical apparatus using the apparatus
state data structure.

[0134] M26. The method according to the preceding
embodiment, wherein determining a state of the technical
apparatus comprises determining for each functionality of
the technical apparatus whether it is present or missing.
[0135] M27. The method according to any of the preced-
ing embodiments, wherein the method further comprises
determining a cause for a missing functionality of the tech-
nical apparatus using the apparatus state data structure.
[0136] M28. The method according to the preceding
embodiment, wherein the method further comprises output-
ting the cause for the missing functionality.

[0137] M29. The method according to any of the preced-
ing embodiments, wherein the method further comprises

US 2023/0068323 Al

recovering a missing functionality of the technical apparatus
using the apparatus state data structure.

[0138] M30. The method according to any of the 3 preced-
ing embodiments, wherein determining a cause for a miss-
ing functionality of the technical apparatus using the appa-
ratus state data structure comprises using a reasoning
system.

[0139] M31. The method according to the preceding
embodiment, wherein the reasoning system is configured
to determine the cause for the missing functionality based
on each data field of the apparatus state data structure.
[0140] M32. The method according to any of the 2 preced-
ing embodiments, wherein the reasoning system is imple-
mented using logic programming.

[0141] M33. The method according to any of the 2 preced-
ing embodiments, wherein the reasoning system comprises
logical rules configured to determine the cause for the miss-
ing functionality.

[0142] M34. The method according to the preceding
embodiment, wherein the logical rules are configured to
categorize the causes for the missing functionality.

[0143] M35. The method according to any of the 2 preced-
ing embodiments, wherein the logical rules comprise logical
operations on the data fields of the apparatus state data
structure.

[0144] M36. The method according to any of the preced-
ing embodiments, wherein the method further comprises
using an executor application.

[0145] M37. The method according to the preceding
embodiment, wherein the executor application is a state
machine executor application or a behavior tree executor
application.

[0146] M38. The method according any of the 2 preceding
embodiments, wherein the executor application determines
the state of the technical apparatus using the apparatus state
data structure.

[0147] M39. The method according to the preceding
embodiments, wherein the executor application determines
to execute tasks based on the determined state of the techni-
cal apparatus.

[0148] M40. The method according to any of the 4 preced-
ing embodiments, wherein the executor application executes
a task and simultaneously determines the state of the tech-
nical apparatus using the apparatus state data structure.
[0149] M41. The method according to the preceding
embodiment, wherein the executor application calls a miss-
ing capability handler routine upon determining that a func-
tionality is missing to determine a handling routine.

[0150] M42. The method according to the preceding
embodiment, wherein the handling routine comprises reco-
vering the missing capabilities.

[0151] M43. The method according to any of the 2 preced-
ing embodiments, wherein the handling routine comprises
generating a request for manual support.

[0152] M44. The method according to any of the 8 preced-
ing embodiments and with the features of embodiment M30,
wherein the executor application calls the reasoning system
to determine a cause for a missing functionality, upon deter-
mining that a functionality is missing.

[0153] M45. The method according to the preceding
embodiment and with the features of embodiment M41,
wherein the missing capability handler routine determines
the handling routine based on the output of the reasoning
system.

Mar. 2, 2023

[0154] M46. The method according to any of the preced-
ing embodiments, wherein one of the at least one capability
data field indicates a driving functionality of the technical
apparatus.

[0155] M47. The method according to any of the preced-
ing embodiments, wherein one of the at least one capability
data field indicates a navigation functionality of the techni-
cal apparatus.

[0156] M48. The method according to any of the preced-
ing embodiments, wherein one of the at least one capability
data field indicates an object location functionality of the
technical apparatus.

[0157] M49. The method according to any of the preced-
ing embodiments, wherein one of the at least one capability
data field indicates an object manipulation functionality of
the technical apparatus.

[0158] MS50. The method according to any of the preced-
ing embodiments, wherein the technical apparatus com-
prises a drive unit configured to move the technical
apparatus.

[0159] M51. The method according to any of the preced-
ing embodiments, wherein the technical apparatus com-
prises a pick up unit configured to pick up at least one
object.

[0160] MS52. The method according to the preceding
embodiment, wherein the pick up unit comprises at least
one gripper.

[0161] MS53. The method according to any of the preced-
ing embodiments, wherein the technical apparatus com-
prises a shelf unit configured to store at least one object.
[0162] MS54. The method according to any of the preced-
ing embodiments, wherein the technical apparatus com-
prises an emergency button.

[0163] MS55. The method according to any of the preced-
ing embodiments, wherein the technical apparatus com-
prises a sensor.

[0164] MS56. The method according to any of the preced-
ing embodiments, wherein the technical apparatus is config-
ured to pick up objects.

[0165] MS57. The method according to any of the preced-
ing embodiments, wherein the method is a computer imple-
mented method.

[0166] MS58. The method according to any of the preced-
ing embodiments, wherein the method is performed by a
system comprising the technical apparatus and a processor.
[0167] MS59. The method according to the preceding
embodiment, wherein the system further comprises a mem-
ory device.

[0168] M60. The method according to any of the preced-
ing embodiments, wherein the technical apparatus is a robot.
[0169] MO61. The method according to any of the 3 preced-
ing embodiments, wherein the technical apparatus com-
prises the processor.

[0170] M62. The method according to any of the preced-
ing embodiments and with the features of embodiment M36,
wherein the executor application comprises a state generator
node configured to generate the apparatus state data
structure.

[0171] M63. The method according to the preceding
embodiment, wherein the state generator node is a process.
[0172] M64. The method according to any of the 2 preced-
ing embodiments, wherein the state generator node gener-
ates the apparatus state data structure periodically.

US 2023/0068323 Al

[0173] M65. The method according to preceding embodi-
ment, wherein the state generator node generates the appa-
ratus state data structure with a frequency of at least 1 Hz.
[0174] M66. The method according to any of the 2 preced-
ing embodiments, wherein the state generator node gener-
ates the apparatus state data structure according to an adap-
tive frequency.

[0175] M67. The method according to the preceding
embodiment, wherein the adaptive frequency depends on
at least one of the capability data fields and/or on at least
one of the associated data fields.

[0176] MG68. The method according to any of the 6 preced-
ing embodiments, wherein the executor application com-
prises a plurality of process nodes, wherein the state genera-
tor node is one of the process nodes and wherein the state
generator node is configured to receive the output of at least
one other process node to generate the apparatus state data
structure.

[0177] M69. The method according to any of the preced-
ing embodiments, wherein the method comprises storing in
a memory device the apparatus state data structure.

[0178] M70. The method according to the preceding
embodiment and with the features of embodiment M62,
wherein the method comprises the state generator node gen-
erating and storing the apparatus state data structure.
[0179] M71. The method according to any of the 2 preced-
ing embodiments, wherein the method comprises storing a
respective timestamp associated to the apparatus state data
structure, the respective timestamp being configured to indi-
cate a time of generation of the apparatus state data
structure.

[0180] M72. The method according to any of the 3 preced-
ing embodiments and with the features of embodiment M25,
wherein the method comprises determining a past state of
the technical apparatus using a stored apparatus state data
structure.

[0181] M73. The method according to any of the preced-
ing embodiments, wherein the technical apparatus is an
autonomous vehicle.

[0182] Below system embodiments will be discussed.
These embodiments are abbreviated by the letter “S” fol-
lowed by a number. Whenever reference is made to system
embodiments, these embodiments are meant.

[0183] S1. A system comprising a technical apparatus;
and a memory device configured to store an apparatus
state data structure for controlling the technical apparatus,
wherein the apparatus state data structure comprises at least
one capability data field, wherein each capability data field
indicates a respective functionality of the technical appara-
tus, wherein the apparatus state data structure comprises at
least one associated data field, wherein each associated data
field is associated with a respective capability data field.
[0184] S2. The system according to the preceding embo-
diment, wherein the system is configured to carry out the
method according to any of the preceding method
embodiments.

[0185] S3. The system according to any of the preceding
system embodiments, wherein the apparatus state data struc-
ture is configured to comprise any of the features of the
apparatus state data structure used by the method according
to any of the preceding method embodiments.

[0186] S4. The system according to any of the preceding
system embodiments, wherein the technical apparatus com-
prises the memory device.

Mar. 2, 2023

[0187] S5. The system according to any of the preceding
system embodiments, wherein the memory device is config-
ured to further store the reasoning system of embodiment
M30.

[0188] S6. The system according to any of the preceding
system embodiments, wherein the memory device is config-
ured to further store the executor application of embodiment
M36.

[0189] S7. The system according to any of the preceding
system embodiments, wherein the technical apparatus is
configured according to embodiments M50 to M56.

[0190] S8. The system according to any of the preceding
system embodiments, wherein the system further comprises
a Processor.

[0191] S9. The system according to any of the preceding
system embodiments, wherein the technical apparatus is a
robot.

[0192] S10. The system according to any of the 2 preced-
ing embodiments, wherein the technical apparatus com-
prises the processor.

[0193] SI11. The system according to embodiment S8 or
S10, wherein the processor executes the method according
to any of the preceding method embodiments.

[0194] S12. The system according to any of the preceding
system embodiments, wherein the technical apparatus is an
autonomous vehicle.

[0195] Below computer program product embodiments
will be discussed. These embodiments are abbreviated by
the letter “A” followed by a number. Whenever reference
is made to computer program product embodiments, these
embodiments are meant.

[0196] Al. A computer program product comprising
instructions which, when the program is executed by a com-
puter, causes the computer to carry out the method accord-
ing to any of the preceding method embodiments.

[0197] A2. The computer program product according to
the preceding embodiment, wherein the technical apparatus
comprises the computer.

[0198] A3. The computer program product according to
the penultimate embodiment, wherein the computer is a ser-
ver external to the technical apparatus.

[0199] Below computer readable storage medium embodi-
ments will be discussed. These embodiments are abbre-
viated by the letter “B” followed by a number.

[0200] B1. A first computer readable storage medium hav-
ing stored thereon the computer program product according
to any of the preceding computer program product
embodiments.

[0201] B2. A second computer readable storage medium
having stored thereon the apparatus state data structure used
by the method according to any of the preceding method
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0202] FIG. 1 provides a schematic of an apparatus state
data structure.

[0203] FIG. 2 illustrates an exemplary behavior tree
executor application using the apparatus state data structure
to execute tasks.

[0204] FIG. 3 illustrates another example of the behavior
tree executor application.

[0205] FIG. 4 illustrates an exemplary reasoning system
configured to determine using the apparatus state data struc-
ture the cause of an error.

US 2023/0068323 Al

[0206] FIG. 5 illustrates an example of an apparatus state
data structure.

DETAILED DESCRIPTION

[0207] FIG. 1 illustrates an apparatus state data structure
that can be configured to represent a state of a technical
apparatus that can for example be a robot. For example,
the technical apparatus may be an autonomous vehicle
and/or a robot. While in the following, embodiments will
be described with reference to a robot (cf., data structure
100 labelled as “robot state™), it should be understood that
this is merely exemplary and that the present technology
may also be used to operate a technical apparatus, which is
different from a robot.

[0208] The robot can be modelled as having a set of cap-
abilities that allow it to perform tasks. Every type of task
assigned to the robot can thus be associated with a set of
required capabilities to complete it. For example, a task of
moving to a position requires the robot to be able to cor-
rectly move its base, thus to have a navigation capability.
The task of picking up an object, instead, requires the
robot to be able to move in front of the object, locate it,
and manipulate it. Thus, such requirements imply that the
robot may require navigation, object location, and object-
manipulation capabilities to be enabled for the robot to
pick up an object.

[0209] In view thereof, the robot errors can be defined as
the circumstances in which a robot is missing capabilities.
Using different types of information available in the robot to
compute the capabilities, the features of the present disclo-
sure can allow determining what the robot can and cannot do
at any moment in time. Moreover, by having explicit mod-
eling of task requirements, the features of the present dis-
closure allow explaining and/or reporting, in case of missing
capabilities, the reason hindering the robot from achieving a
particular goal. Specifically, the aforementioned information
is structured in a compact representation that can be referred
to as an apparatus state data structure 10, or, interchange-
ably, as robot state representation 10 or as a vehicle state
data structure 10.

[0210] The robot state representation 10 can comprise a
plurality of data fields 100, 110, 120, 130, 140. In particular,
the robot state representation 10 can comprise capability
data field(s) 110 and associated data fields 120, 130, 140,
such that each associated data field 120, 130, 140 can be
associated with a respective capability data field 110. Each
capability data field 110 can be configured to indicate a
respective functionality (interchangeably referred to as cap-
ability) of the robot. A functionality can be present (i.e.,
enabled) or missing (i.e., disabled). A functionality can be
present when the respective capability data field 110 is
enabled. A functionality can be missing when the respective
capability data field 110 is disabled. On the other hand, each
associated data field 120, 130, 140 can be configured to
facilitate determining whether the respective capability
data field 110 is enabled or disabled.

[0211] In some embodiments, the robot state representa-
tion 10 can comprise a modular structure, wherein each cap-
ability data field 110 can be connected to at least one asso-
ciated data field 120, 130, 140. In other words, each
capability data field 120, 130, 140 can be associated with a
respective capability data field 110. In such embodiments,
the association between a capability data field 110 and an

Mar. 2, 2023

associated data field 120, 130, 140 can be configured to indi-
cate a membership of the associated data field 120, 130, 140
on the capability data field 110.

[0212] In some embodiments, the robot state representa-
tion 10 can comprise a hierarchical structure, wherein each
capability data field 110 can comprise a higher hierarchical
level than the associated data fields 120, 130, 140. For
example, the robot state representation 10 can comprise a
tree structure, wherein each data field 100 to 140 can be a
node of the tree structure. That is, each capability data field
110 can be a capability node 110 and each associated data
field 120, 130, 140 can be a capability enabling node 120,
130, 140. Moreover, each capability node 110 can be a par-
ent node of at least one capability enabling node 120, 130,
140 and each capability enabling node 120, 130, 140 can
comprise a parent capability node 110. The tree can com-
prise a robot state node 100, which can be the root node
100 of the tree. In such embodiments, the association
between a capability data field 110 and an associated data
field 120, 130, 140 can be configured to indicate a hierarch-
ical relation between the capability data field 110 and the
associated data field 120, 130, 140.

[0213] Functionalities of a technical apparatus can depend
on different requirements. For example, a functionality may
require certain components to be operational and/or in a pre-
determined state. Moreover, certain events that may have
occurred can hinder some of the capabilities of the robot.
Therefore, the robot state representation 10 can comprise
different types of associated data fields 120, 130, 140 for
representing different capability requirements. More parti-
cularly, the robot state representation 10 can comprise
required diagnostics data field 120, required component
state data field 130 and event storage data field 140.

[0214] That is, four different types of information can be
encoded in an apparatus state data structure 10.

[0215] The first information can include robot capabilities
(i.e., capability data fields 110), which can be key-value
pairs 110 configured to represent what the robot can do at
a certain moment in time (e.g., if the robot can locate, navi-
gate, or manipulate).

[0216] The second information can include component
states (i.e., required component state date field(s)), which
can comprise key-value pairs representing a state into
which a robot component currently is (e.g., if the robot has
its battery in a critical or full charging state). Each required
component state data field 130 can be configured to indicate
the state of one required component or the state of a plurality
of required components, for a respective functionality of the
robot. For example, a functionality may require a plurality
of components to be in a predetermined state. In this case,
the robot state representation 10 can comprise, associated to
the respective capability data field 110, a plurality of
required component state data fields 130, each configured
to indicate the state of a respective required component.
Alternatively, the robot state representation 10 can com-
prise, associated to the respective capability data field 110,
one required component state data field 130 configured to
indicate the state of each required component.

[0217] The third information can include diagnostics (i.e.,
required diagnostic data field 120), which can be standard
robot operation system (ROS) diagnostic messages config-
ured to represent if a hardware or software component is
behaving correctly or if it has an error (e.g., if the motors
are operational or if the lasers are reporting correctly their

US 2023/0068323 Al

readings). Similarly to the above, each required diagnostic
data field 120 can be configured to indicate the operational
status of one required component or the operational status of
a plurality of required components, for a respective func-
tionality of the robot.

[0218] The fourth information can relate to critical events
(ie., event storage data field 140), which can comprise
entries in a database table representing events happening at
a given point in time, which cannot be continuously
observed (e.g., the event of hitting a shelf with a gripper).
[0219] It will be understood that each capability data field
110 can be associated at least one required diagnostics data
field 120, at least one required component state data field
130, at least one event storage data field 140 or any combi-
nation thereof. Moreover, each capability data field 110 can
comprise a plurality of associated data fields 120, 130, 140
of the same type. The latter is particularly the case if the
associated data fields 120, 130 relate only to a single
component.

[0220] With such a detailed and explicit representation of
the apparatus state provided by the apparatus state data
structure 10, upon errors, a high-level executor (e.g., a
state machine based or behavior tree based executor) can
call a reasoning system (implemented, for example, with a
logic programming language like Prolog) that can perform
reasoning on the current state and deduce the cause of a
given missing capability and thus the best recovery behavior
to be adopted.

[0221] FIG. 2 illustrates an executor application 20 that
can use the apparatus state data structure 10. The executor
application 20 illustrated in FIG. 2 is a behavior tree execu-
tor application, which for the sake of brevity can also be
interchangeably referred to as a behavior tree 20.

[0222] The behavior tree 20 can comprise a root node 200,
which can be the initial node to be called to traverse the
behavior tree 20. It can further comprise composite nodes
202, 206, 216 which are nodes that can have one or more
child nodes. They will process one or more of their children
according. The composite nodes 202, 206, 216 can be con-
figured to return to their parent the status RUNNING, while
their child nodes are being executed and running, the status
SUCCESS when at least one or all of their child nodes suc-
cessfully executes and the status FAILURE when at least
one or all of their children fails to execute. The behavior
tree 20 can further comprise decorator nodes 208, 212,
214. These are nodes that can comprise only one child
node. They are typically configured to transform the result
they receive from their child node’s status, to terminate the
child, or repeat processing of the child, depending on the
type of decorator node 208, 212, 214. The behavior tree 20
can further comprise leaf nodes 204, 210, 218, 220. These
are the lowest level node types and do not comprise any
child nodes. These nodes typically comprise programs or
tasks to be executed. The leaf nodes leaf nodes 204, 210,
218, 220 can comprise calls to other applications and/or
other behavior trees.

[0223] The root node 20 can call a first sequence node
202, which can be a child node to the root node 200. The
first sequence node 202 can be configured to sequentially
call its child nodes 204, 206.

[0224] More particularly, the first sequence node 202 can
first call the get robot state node 204. The get robot state
node 204 can utilize the apparatus state data structure 10,
illustrated in FIG. 1, to determine the state of the robot.

Mar. 2, 2023

For example, the get robot state node 204 can determine
which of the capabilities of the robot are present or missing.
[0225] After the completion of the get robot state node
204, the first sequence node 202 can call the second
sequence node 206, which can be configured to sequentially
call its child nodes 208 and 212. The second sequence node
206 can be a memory sequence node, i.e., a sequence node
with memory.

[0226] A memory sequence node can be configured to
remember the last running child node and can jump back
to it in the next tick, i.e., it does not start the execution of
its children with the first child node (as typical sequence
nodes without memory do). That is, the memory sequence
nodes can be configure to call its child nodes one after
another, starting from the child that has been running in
the previous iteration. When a child node succeeds, the
memory sequence node can continue with the next child.
when a child fails, the memory sequence node fails as
well. When all children succeed, the memory sequence
node succeeds. The memory feature of a sequence node is
indicated in FIGS. 2 and 3 with a star “*”.

[0227] More particularly, the second sequence node 206
can call the boot sequence node 210 via proxy of the first
ignore failure node 208. The first ignore failure node 208,
which can be a decorator node 208, can be configured to
return SUCCESS when its child node, respectively the
boot sequence node 210, returns SUCCESS or FAILURE,
and return RUNNING when its child node returns RUN-
NING. The boot sequence node 210 causes the robot to be
initialized. After the bot sequence node 210 finishes execu-
tion, the first ignore failure node 208 returns SUCCESS.
This causes the second sequence node 206 to call its second
child node 212.

[0228] In particular, the second sequence node 206 calls a
selector node 216 via proxy of the decorator nodes 212, 214.
The decorator node 212 is a loop node 212 which recalls its
children at the end of their execution. The decorator node
214 is a second ignore failure node 214 which has the same
functionality as the first ignore failure node 208.

[0229] The selector node 216 can be configured to start
with calling their respective designated first child node. If
a ticked child node returns RUNNING, selector node 216
can also return RUNNING. If one child node returns SUC-
CESS, the selector node 216 succeeds as well and does not
execute any further child nodes. If all child nodes return
FAILURE selector node 216 can also return FAILURE.
The selector node 216 can be a memory selector node, i.e.,
a selector node with memory.

[0230] A memory selector node can be configured to
remember the last running child and can jump back to it in
the next tick, i.e., it does not start the execution of its chil-
dren with the first child. That is, a memory selector node can
call its child nodes one after another, starting from the child
that has been running in the previous iteration. If one child
succeeds, the memory selector node succeeds as well and
does not execute any further children. When one child
fails, the memory selector node can continue with the next
one. If all children fail, the memory selector node fails as
well.

[0231] The memory feature of a selector node is indicated
in FIGS. 2 and 3 with a star “*”.

[0232] In the behavior tree 20 illustrated in FIG. 2, the
selector node 216 initially calls its first child node which is
the execute tasks node 218. The execute tasks node 218,

US 2023/0068323 Al

which is a leaf node, can cause the robot to perform the tasks
that are assigned to the robot. If the execute tasks node 218
fails, the selector node 216 calls its second child, wait for
next task node 220, which causes the robot to wait for the
next task.

[0233] That is, in the behavior tree 20 illustrated in FIG. 2,
at every tick, the previously described robot state represen-
tation is retrieved (node 204) and used, after having initia-
lized the robot (node 210), in a while-true loop (node 212) to
execute tasks (node 218).

[0234] FIG. 3 illustrates another example of a behavior
tree executor application 20. In the depicted example, after
being tasked, the plan related to the current task is executed
while checking the availability of the capabilities required
for the task. In a negative case, the behavior tree enters the
subtree in charge of recovery of the missing capabilities and,
upon failure, in charge of reporting the error to the outside.
[0235] More particularly, the depicted behavior tree can
comprise a root node 300 and a first sequence node 302.
The first sequence node 302 can call the get next task node
304. The get next task node 304 can, for example, access a
task queue (not shown) and can retrieve from therein a task
to be accomplished. For example, the task queue can be a
priority or ordered queue and the task with the highest prior-
ity is retrieved.

[0236] After being tasked by node 304, the first selector
node 302 can call recovery node 306 which comprises
nodes 308 and 320 as child nodes.

[0237] The recovery node 306 can execute the first child
node (in this case node 308) as a main task and will try the
other child nodes (in this case node 320) one after the other
to recover from failures in the main task. If the first child
node succeeds, the recovery node 306 succeeds as well and
does not execute any other children. If the first child node
fails, it continues with the other children until one of them
succeeds. In this case, it continues with the first child. If all
children fail, the recovery task fails as well. The recover
node 308 can allow to compactly implement a recovery
behavior. This can be advantageous when using behavior
trees for controlling physical robots that operate in complex
and uncertain environments. In these cases, actions may
often fail and routines for recovering from failures may
account for large parts of a robot’s control program.

[0238] Thus, the recovery node 306 allows to execute
tasks in the nodes branching from the first child node 308
and in case this fails will try to recover from this failure by
calling the handling missing capability node 320.

[0239] The parallel node 308 can be configured to call its
child nodes in such a way that the child nodes execute their
associated task simultaneously to each other. When the par-
allel node 308 calls its child nodes, at least two child nodes
of the parallel node 308 may be in the state RUNNING. The
parallel node 308 therefore simultaneously calls the loop
node 310 and the execute task node 314. In turn, the loop
node 310 causes the check task node 312 to be re-called
upon successful completion of its execution, therefore caus-
ing the check task node 312 to be executed in a loop fashion.
[0240] In other words, after being tasked by the get next
task 304, the behavior tree 20 traverses to executing in par-
allel the check task node 312 and the execute task node 314.
The check task node 312 can be configured to determine
whether the capabilities required for the assigned task are
present or not. For example, the check task node 312 can
first determine what capabilities are required for the

Mar. 2, 2023

assigned task and after that it can determine whether the
required capabilities are present or not. The check task
node 312 can, for example, trigger accessing a memory
device which stores a mapping between tasks and required
capabilities for each task. To determine whether the required
capabilities are present or missing, the check task node 312
can use the robot state representation 10 (illustrated in FIG.
1). In parallel to this, the execute task node 314 executes the
assigned task.

[0241] The parallel node 308 can further be configured to
return RUNNING when at least one of its children is run-
ning, SUCCESS if more than one of its children succeed and
to return FAIL otherwise. Therefore, if the check task node
312 fails (i.e., there is at least one required capability that is
missing) or if the execute task node 314 fails (i.e., the task
cannot be completed), the handle missing capabilities node
320 is called by node 306.

[0242] The handle missing capabilities node 320 can per-
form reasoning on the missing capabilities and can deduce
from the robot state representation 10 (see FIG. 1) the cause
of the error. For this, the handle missing capabilities node
320 can call a reasoning system.

[0243] FIG. 4 illustrates an exemplary reasoning system
40. In the illustrated representation, the reasoning system
40 is implemented using a logic programming language,
such as, SWI-prolog, wherein logical rules are encoded
and used to categorize and explain the causes of errors hap-
pening on the robot.

[0244] For example, the reasoning system illustrated in
FIG. 4 relates to a robot configured to use lidar sensors to
localize and move in an environment. FIG. 4a illustrates
how a can_navigate capability of such a robot can be mod-
elled or encoded. The can_navigate capability (specified in
the first line of FIG. 4a) can require the output of the lidars
to be always and constantly available. Therefore, associated
to the can_navigate capability, the requirement for the laser
data to be available is provided as one of the required diag-
nostics for the can navigate capability, said diagnostic
named “/laser_data_available” (line 2 and 5-7 of FIG. 4b).
[0245] FIG. 4a actually illustrates a portion of the appara-
tus state data structure, wherein the can_navigate capability
can be a capability data field 110 and the required diagnos-
tics “/laser_data available” can be a required diagnostics
data field 120 or a part of a required diagnostic data field
120.

[0246] The reasoning system 40 can comprise a set of
logical rules configured to deduce the cause of the error
when the diagnostic returns an error. FIG. 45 illustrates a
set of logical rules for deducing and reporting the cause of
the error, when the “/laser_data_available” diagnostic indi-
cates an error. More specifically, the first line of FIG. 45
checks whether the etror is due to laser data missing, the
second line provides a more elaborate and human readable
description of the error and the third line defines properties
of the error.

[0247] A similar mechanism can be also adopted to
deduce the causes of errors coming from wrong component
state values or critical events. This will be further described
with reference to FIG. 5.

[0248] FIG. 5 depicts an exemplary representation 10 of a
robot state comprising a plurality of data fields. That is,
while FIG. 1 provides a general illustration of the apparatus
state data structure, FIG. § depicts a more detailed example
of the apparatus state data structure 10. For the sake of brev-

US 2023/0068323 Al

ity and understandability, in FIG. 5, the capability data fields
110 are referred to by the numeral “110” followed by a char-
acter, the required diagnostic data fields 120 are referred to
by the character “D” followed by a number, the required
component state data fields 130 are referred to by the char-
acter “C” followed by a number and the event storage data
fields 140 are referred to by the character “E” followed by a
number. That is, the enabling data fields 120, 130, 140 are
referred by characters “D”, “C” and “E”, respectively fol-
lowed by a number.

[0249] The robot state representation 10 can comprise an
apparatus state data field 100 (interchangeably referred to as
robot state data field 100 or as a vehicle state data field 100)
which can represent the state of the apparatus. Moreover, the
robot state representation 10 can comprise a plurality of cap-
ability data fields 110. The robot state data field 100 can be
directly associated with each capability data field 110. This
can allow the robot state data field 100 to comprise data
indicative of each of the capability data fields 110. For
example, the robot state data field can indicate the presence
or missing of each of the capabilities 110A-110D.

[0250] Furthermore, also a component state data field C7
can be directly associated with the robot state data field 100.
Therefore, the robot state data field 100 can further indicate
the state of the component of 120A (i.e., of the emergency
button).

[0251] Generally, the state representation depicted in FIG.
5 can be used for operating a robot as disclosed, e.g., in WO
2017/121747 Al (although it will be understood that this is
merely exemplary).

[0252] Such a robot may comprise different capabilities or
functionalities. The terms capability and functionality are
used interchangeably throughout the description. A first
capability may be that the robot is able to drive, i.e., to
change the location of its base. This is represented by the
respective capability data field 110A.

[0253] Another capability may be that the robot is able to
turn its tower (referred to as pick up unit in WO 2017/
121747 A1), and this capability is represented by capability
data field 110B in FIG. §.

[0254] A still further capability is that the robot is able to
pick up an object by means of its gripper (referred to as pick
up device in WO 2017/121747 A1), which is represented by
capability data field C7 in FIG. S.

[0255] Furthermore, the robot may also comprise the abil-
ity to move the gripper (i.e., the pick up device) inside the
robot, e.g., to place an item that has been picked up into on
onboard shelf unit of the robot. This functionality is repre-
sented by capability data field 110D in FIG. §.

[0256] All these capability data fields 110A-110D are
further associated with the associated data fields Cn, Dn,
and En. The associated data fields relate to required compo-
nents states (data fields Cn), required diagnostics (data fields
Dn), and reported events (data field En).

[0257] For example, the can drive capability data field
110A requires the tower to be closed (e.g., such that the
gripper may not extend out of the tower for security rea-
sons), i.e., this is the component state Cl the tower is
required to be in for the can_drive capability to be enabled
(i.e., present). Furthermore, the can drive capability data
field 110 also requires the diagnostic state D1, i.e., that the
drive motor is operational.

[0258] The can turn tower capability data field 110B
requires the component state C2, i.e., that the robot is in a

Mar. 2, 2023

docked state and diagnostic state D2, that the tower motor is
operational.

[0259] More particularly, in some embodiments, the robot
may be operated in an environment. To ensure safety of
operation, the robot may comprise an obstacle sensor,
which may have a monitoring area. When the obstacle sen-
sor senses an obstacle in the monitoring area, the robot or a
module thereof may be switched to a safe operation mode.
For example, a velocity with which the robot moves may be
reduced in the safe operation mode. Therefore, to increase
safety, some robot capabilities can be reduced when an
obstacle is detected.

[0260] However, in some embodiments, the environment
may comprise closed contours. For example, the closed con-
tours may be formed by shelves of a warechouse wherein the
robot operates. The closed contours may as well be formed
by walls. In some embodiments, the closed contours may be
placed at a distance of, e.g., 1.5 m to one another. If operat-
ing a robot with a safety mechanism including a monitoring
area as described above between such closed contours, the
obstacle sensor would constantly sense an obstacle (i.e., the
closed contours), and would thus switch into the safe opera-
tion mode, limiting its operation due to safety routines. This
may not be ideal, as the robot would then (depending on the
safety routine) either operate more slowly or stop at least a
part of its operation completely.

[0261] To alleviate this, the robot can be configured to
detect when it is between closed contours, i.e., when it is
docked to a closed contour. Such a state is referred to as a
docked state. In the docked state, the monitoring area can be
reduced, for example, to include only the space between the
closed contours (but not the contours). Thus, the obstacle
sensor can be configured not to detect the contours as
obstacles.

[0262] The robot can operate in a warehouse and can be
configured to manipulate items stored in shelves. Thus, an
area in front of the shelves represents an activity zone of the
robot, wherein the robot is allowed to perform object manip-
ulations tasks. As discussed, shelves in a warehouse may
create the closed contours. Therefore, the robot being in a
docked state can be an indication that the robot is close to a
shelve and can therefore perform robot manipulation tasks
(e.g., turning the tower).

[0263] Moreover, object manipulation actions (e.g., turn-
ing the tower, picking an item) can be performed without
hindering safety, since, when the robot operates close to
closed contours (such as shelves), it is unlikely that a
human will move into the route of the robot from the side
where the closed contour is located (due to tight space). Out-
side of the docked state it may not be safe or necessary to
perform said actions.

[0264] Thus, the can_turn tower capability 110B can be
enabled only when the robot is in a docked state C2 and
when the tower motor is operational.

[0265] Similarly, also the can_pick capability data field
110C can require that the robot is in the docked state C3
(as discussed above). In addition, it can require that the grip-
pers are in a ready state (i.e., OK) such that they can be used
to pick objects, as represented by the required component
state data field C5. Furthermore, the can pick capability
can require the tower to be open such that items can be
stowed therein after being picked, as represented by the
required component state data field C4. The can_pick cap-
ability, as illustrated in FIG. 5, also required two diagnos-

US 2023/0068323 Al

tics, in particular, that the gripper and the tower motors are
operational, as represented by the required diagnostic data
fields D3 and D4 respectively.

[0266] The can move gripper_in robot can be another
capability of the robot that can allow the robot to move the
gripper within the robot. This can allow the robot to perform
tasks, such as stowing an item in the shelf unit of the robot.
The can_move gripper_in_robot data field 110D, requires
the gripper motor to be in a ready state (i.e., OK), such
that it can be moved, as represented by the required compo-
nent state data field C6. Moreover, the capability data field
110D requires a diagnostic of the gripper motor to indicate
that the gripper motor is operational, as indicated by the
required diagnostic data field D5. Further, the capability
data field 110D also has a child data field realized as an
event storage data field storing that an overcurrent in gripper
motor has been detected, as indicated by the event storage
data field E1.

[0267] Based on the robot state representation depicted in
FIG. §, assume that the robot is asked to perform a transport
task. In this circumstance, four different events that might
happen will be discussed with reference to the representa-
tion of the robot state. Based thereon, embodiments of the
present technology may decide the best recovery behavior to
be adopted in every situation:

[0268] The four exemplary situations that will be dis-
cussed are:
[0269]

robot.
[0270] 2. A motor reports a problem while manipulating
in the shelf on board.
[0271] 3. The robot loses the docked state while search-
ing for a box to be picked.
[0272] 4. The robot collides the box in the gripper with
a box stored on the onboard shelf.
[0273] In the first case, the robot state will report that most
of the capabilities have been lost, given that, when the emer-
gency button is pressed, the power is cut to all the motors of
the robot. Additionally, the component state of the emer-
gency button will report having a state value of “pressed’.
By combining this information and reasoning on the robot
state at run time, embodiments of the present technology
(e.g., a behavior tree and/or a reasoning system) are able to
correctly classify that someone has stopped the robot and the
best recovery behavior is to wait for the button to be
released.
[0274] That is, in case an emergency button is pressed,
none of the motors is supplied with power. With reference
to FIG. §, it will be understood that all of the diagnostic data
fields D1 (indicating the operational state of the drive
motor), D2 (indicating the operational state of the tower
motor), D4 and D5 (both indicating the operational state of
the gripper motor) are in a negative state. Thus, in this sce-
nario, none of the capability data fields 110A to 110D would
be enabled.
[0275] As described, the robot state tree depicted in FIG. 5
may also comprise a component state data field C7 relating
to the state of the emergency button, which is active in the
above-described scenario.
[0276] Thus, based on the states of the data fields D1, D2,
D4, and DS, all the capability data fields 110A to 110D are
disabled, and data field C7 indicates that the emergency but-
ton is pressed.

1. A human presses the emergency button of the

Mar. 2, 2023

[0277] In such a state, it may be determined that most of
the functionalities of the robot are disabled, and that the
robot itself cannot take an active recovery, but has to wait
for the emergency button to be released.

[0278] In the second case, a robot reports a problem while
manipulating in the shelf on board. More particularly, the
robot may report that the motor to turn the tower is currently
not operational, i.e., that this motor is in a malfunctioning
state. Due to this, the robot will be incapable of moving the
tower and therefore it won’t be able to complete any trans-
port item task. More particularly, in response thereto, the
diagnostic data fields D2 and D4 will be negative, such
that the capability data fields 110B and 110C will not be
functioning.

[0279] However, if the error occurred when the tower was
closed, the robot can still navigate around and therefore is
able to complete a charging task. That is, even if the tower
cannot be turned (i.e., capability data field 110B is nega-
tive), the capability data field 110A can be positive in case
that the component state C1 (tower closed?) is positive.
[0280] All the information to make this decision can be
taken by the apparatus state data structure 10 (which may
be a behavior tree), classifying the error as such by analyz-
ing the diagnostics for the motor failure, and the capabilities
to know that it can still navigate. Further, a reasoning system
40 as illustrated in FIG. 4 can be configured to make the
above decision based on the apparatus state data structure
10.

[0281] In the third case, the robot has lost the docked state
while repositioning to search for a specific barcode on a
shelf. The docked state, as discussed, can be used to repre-
sent the state of the robot detecting with a safety certified
sensor a shelf next to itself, and thus being allowed to
manipulate objects. As the robot lost the docked state
while being in the closed contours (i.e., between the
shelves), the obstacle sensor will consider the shelves as
obstacles. Hence, the safety system on the robot will cut
the motors of the base (for safety purposes), leaving on the
ones in the tower.

[0282] The robot state, through diagnostics, will report
that the motors in the base are in a malfunctioning state.
That is, the diagnostic data field D1 (indicating the opera-
tional status of the drive motors) will be negative. Addition-
ally, the robot state will report in the component state that
the robot has lost the docked state. That is, the required com-
ponent state data fields C2 and C3 will indicate that the
robot is not in the docked state.

[0283] Solely based on information stored in the robot
state representation 10, an executor application 20 (e.g., a
behavior tree) can determine that losing the docked state
caused the drive motors to be in a malfunctioning state. In
other words, it can be determined that the drive motors do
not comprise any defect, but it was rather the safety system
that cut the power to the drive motors. Therefore, the execu-
tor application can take the correct decision on how to pro-
ceed: e.g., close the tower to regain the safe state and con-
tinue executing the current task.

[0284] Finally, in the fourth case, while putting down a
box into the onboard shelf, the robot collides the box in
the gripper with another box on the onboard shelf. While
doing so, the motors (or sensors provided therein) will mea-
sure for a short period of time an overcurrent. This event
(i.e., the overcurrent in the gripper motor) can be logged in
a critical events database.

US 2023/0068323 Al
14

[0285] The collision will cause the action of moving the
gripper to stop. Since the current drawn by the motors will
return to normal when the action is stopped due to the error,
the diagnostics contained in the robot state will return to an
“ok” state as soon as the current drawn by the motor returns
to normal levels. That is, the component state data field C6
will indicate an OK state of the gripper motors and the
required diagnostic data field D5 will indicate that the grip-
per motor is operational. However, the event storage data
field E1, will indicate that an overcurrent was detected at
the gripper motor. Therefore, using the information from
the robot state representation 10, the can_move gripper -
in_robot capability 110D, can be disabled and the robot
will wait for human inspection.

[0286] Whenever a relative term, such as “about”, “sub-
stantially” or “approximately” is used in this specification,
such a term should also be construed to also include the
exact term. That is, e.g., “substantially straight” should be
construed to also include “(exactly) straight”.

[0287] Whenever steps were recited in the above or also in
the appended claims, it should be noted that the order in
which the steps are recited in this text may be accidental.
That is, unless otherwise specified or unless clear to the
skilled person, the order in which steps are recited may be
accidental. That is, when the present document states, e.g.,
that a method comprises steps (A) and (B), this does not
necessarily mean that step (A) precedes step (B), but it is
also possible that step (A) is performed (at least partly)
simultaneously with step (B) or that step (B) precedes step
(A). Furthermore, when a step (X) is said to precede another
step (Z), this does not imply that there is no step between
steps (X) and (Z). That is, step (X) preceding step (Z)
encompasses the situation that step (X) is performed directly
before step (Z), but also the situation that (X) is performed
before one or more steps (Y1), ..., followed by step (7).
Corresponding considerations apply when terms like
“after” or “before” are used.

[0288] While in the above, preferred embodiments have
been described with reference to the accompanying draw-
ings, the skilled person will understand that these embodi-
ments were provided for illustrative purpose only and
should by no means be construed to limit the scope of the
present disclosure, which is defined by the claims.

What is claimed is:

1. A method of operating a technical apparatus, wherein the
method comprises using an apparatus state data structure for
controlling the technical apparatus,

wherein the apparatus state data structure comprises at least

one capability data field, wherein each capability data
field indicates a respective functionality of the technical
apparatus,
wherein the apparatus state data structure comprises at least
one associated data field, wherein each associated data
field is associated with a respective capability data field,

wherein the at least one associated data field comprises at
least one required component state data field and at least
one required diagnostic data field,

wherein each required component state data field indicates

a configuration of a respective component required for
the functionality of the capability data field associated
with the respective required component state data field,
and

Mar. 2, 2023

wherein each required diagnostic data field indicates a
respective operational state of a component of the tech-
nical apparatus required for the functionality of the cap-
ability data field associated with the respective required
diagnostic data field.

2. The method according to claim 1, wherein each capabil-
ity data field indicates the respective functionality of the tech-
nical apparatus based on each associated data field associated
with the respective capability data field.

3. The method according to claim 1, wherein each capabil-
ity datafield comprises a capability key and a capability value,
and

wherein the capability key comprises a unique identifier
corresponding to the respective functionality of the tech-
nical apparatus and the capability value indicates a status
of the functionality.

4. The method according to claim 1, wherein each required
component state data field comprises a component key and a
component state value, and

wherein the component key comprises a unique identifier
corresponding to the respective component and the com-
ponent state value indicates the configuration of the
component.

5. The method according to claim 1, wherein each required
diagnostic data field comprises a part of an output of a diag-
nostic routine,

wherein the diagnostic routine is a general system diagnos-
tic routine of the technical apparatus, and

wherein the general system diagnostic routine generates a
respective operational state for each component of the
technical apparatus.

6. The method according to claim 1, wherein the at least one
associated data field comprises at least one event storage data
field, wherein each event storage data field comprises data
relating to an event relevant for the respective functionality
of the capability data field associated with the respective
event storage data field.

7. The method according to claim 6, wherein the method
comprises storing in a database data relating to critical events,
and

wherein each event storage data field comprises at least one
entry of the database.

8. The method according to claim 7, wherein the method
comprises triggering storage in the database of the data relat-
ing to critical events based on an output of at least one sensor
of the technical apparatus.

9. The method according to claim 1, wherein the apparatus
state data structure is an apparatus state tree structure,

wherein the apparatus state tree structure comprises a plur-
ality of nodes and a plurality of edges connecting the
nodes, and

wherein each capability data field is a capability node, and
each associated data field is a capability child node.

10. The method according to claim 1, wherein the method
comprises determining a state of the technical apparatus using
the apparatus state data structure and wherein determining a
state of the technical apparatus comprises determining for
each functionality of the technical apparatus whether it is pre-
sent or missing.

11. The method according to claim 1, wherein the method
further comprises determining a cause for a missing function-
ality of the technical apparatus using the apparatus state data
structure.

12. The method according to claim 11, wherein determining
a cause for a missing functionality of the technical apparatus

US 2023/0068323 Al

using the apparatus state data structure comprises using area-
soning system, and

wherein the reasoning system is configured to determine

the cause for the missing functionality based on each
data field of the apparatus state data structure.

13. The method according to claim 12, wherein the reason-
ing system comprises logical rules configured to determine
the cause for the missing functionality, and

wherein the logical rules comprise logical operations on the

data fields of the apparatus state data structure.

14. The method according to claim 1, wherein the method
further comprises recovering a missing functionality of the
technical apparatus using the apparatus state data structure.

15. The method according to claim 1, wherein the method
further comprises using an executor application, and

wherein the executor application determines the state of the

technical apparatus using the apparatus state data
structure.
16. The method according to claim 15, wherein the executor
application determines to execute tasks based on the deter-
mined state of the technical apparatus.
17. The method according to claim 1, wherein the technical
apparatus is a robot configured to locate, pick up, store and
transport items in a warehouse.
18. The method according to claim 17, wherein the robot
comprises a processor and wherein the processor executes the
method according to claim 1.
19. A system comprising:
a technical apparatus, and
amemory device configured to store an apparatus state data
structure for controlling the technical apparatus,

wherein the apparatus state data structure comprises at least
one capability data field, wherein each capability data
field indicates a respective functionality of the technical
apparatus,

wherein the apparatus state data structure comprises at least

one associated data field, wherein each associated data
field is associated with a respective capability data field,

Mar. 2, 2023

wherein the at least one associated data field comprises at
least one required component state data field and at least
one required diagnostic data field,

wherein each required component state data field indicates
a configuration of a respective component required for
the functionality of the capability data field associated
with the respective required component state data field,

wherein each required diagnostic data field indicates a
respective operational state of a component of the tech-
nical apparatus required for the functionality of the cap-
ability data field associated with the respective required
diagnostic data field, and

wherein the system is configured to carry out the method
according to claim 1.

20. A computer readable storage medium having stored

thereon an apparatus state data structure,

wherein the apparatus state data structure comprises at least
one capability data field, wherein each capability data
field indicates a respective functionality of a technical
apparatus,

wherein the apparatus state data structure comprises at least
one associated data field, wherein each associated data
field is associated with a respective capability data field,

wherein the at least one associated data field comprises at
least one required component state data field and at least
one required diagnostic data field,

wherein each required component state data field indicates
a configuration of a respective component required for
the functionality of the capability data field associated
with the respective required component state data field,
and

wherein each required diagnostic data field indicates a
respective operational state of a component of the tech-
nical apparatus required for the functionality of the cap-
ability data field associated with the respective required
diagnostic data field.

% d % %

