
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4 
04

0 
29

3
A

1
*EP004040293A1*

(11) EP 4 040 293 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
10.08.2022 Bulletin 2022/32

(21) Application number: 21155238.5

(22) Date of filing: 04.02.2021

(51) International Patent Classification (IPC):
G06F 9/46 (2006.01) G06F 9/48 (2006.01)

B25J 9/16 (2006.01) G06F 8/34 (2018.01)

(52) Cooperative Patent Classification (CPC): 
B25J 9/1602; G06F 8/34 

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA ME
Designated Validation States: 
KH MA MD TN

(71) Applicant: Magazino GmbH
80687 München (DE)

(72) Inventor: Gemignani, Guglielmo
80687 München (DE)

(74) Representative: Stellbrink & Partner 
Patentanwälte mbB
Widenmayerstrasse 10
80538 München (DE)

Remarks: 
Amended claims in accordance with Rule 137(2) 
EPC.

(54) CONTROLLING AN APPARATUS, E.G., A ROBOT, WITH A BEHAVIOR TREE

(57) Disclosed is a method and a system for control-
ling an apparatus, by using a behavior tree for an as-
signed task performed by the apparatus, wherein the be-
havior tree comprises a planner section and an activation
section, wherein the method comprises calling a planner

section, determining the state of the apparatus and set-
ting an activation status by a planner section in response
to being called, and evaluating the activation status be-
fore executing the assigned task



EP 4 040 293 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] The invention relates to the field of controlling
a technical apparatus, e.g., a robot. More specifically,
the invention relates to an apparatus control based on
behavior trees.
[0002] Generally, robots are not limited to performing
basic preprogrammed tasks, but they may implement de-
cision-making to react to their current environment and/or
its history of actions, i.e., previous and/or failed tasks,
previous and/or current path. Furthermore, robots per-
form increasingly more complex and diverse tasks. In
particular, tasks can be layered such that they are at least
partly performed simultaneously (i.e., navigating, relative
movement of control arms, interacting with the environ-
ment). Thus, mapping the control of a robot by means of
a behavior tree can result in a complex and highly spe-
cialized behavior tree.
[0003] Therefore, implementing the control of robots
using behavior trees requires expert knowledge, is very
labor intensive and thus exhibits a high probability for
logical errors, programming errors and/or errors due to
unforeseen combinations of environmental factors.
[0004] Nevertheless, the behavior tree may contain
several subtrees, respectively action blocks, which are
repeated at different places of the behavior tree due to
high level tasks depending on executing similar or iden-
tical core functions, respectively subtrees. This can be
detrimental to the efficiency of the control as complexity
and/or efficiency, meaning the time necessary to query
the behavior tree can increase. Furthermore, this circum-
stance can make coding of the behavior tree tedious and
its maintenance complex and error-prone.
[0005] Although the basic function implemented by a
subtree may be similar or identical, preconditions and
postconditions might vary depending on the type of ap-
paratus. Thus, the subtree-elements may not be readily
interchangeable, as specific safety condition need to be
checked before executing a task (i.e., grasping an ob-
ject). Consequently, behavior trees are rather complex
and are not suitable to be analyzed or manipulated by
some type of high-level reasoning mechanism. Adding
to the complexity is the fact that higher level functions
which can outline the abstract task to be completed are
intertwined, respectively not logically separated from de-
vice specific action blocks. Thus, a behavior tree may
not be readily transferable between apparatus that can
complete the same abstract task, but require different
action blocks, i.e., subtrees to function.
[0006] Furthermore, document WO 2017 / 148830 A1
discloses the usage of a behavior tree task architecture
for tasking a robot. A basic behavior tree architecture
comprises a root node, a flow control node and an exe-
cution node which are connected via directed edges.
Document WO 2017 / 148830 A1 is incorporated by ref-
erence in its entirety and its disclosure is incorporated in
the content of this application.
[0007] Commonly, behavior trees can be traversed at

a set tick frequency, which may generally be relatively
high. This is computationally very expensive and ineffi-
cient. Furthermore, traversing the behavior tree may in-
volve passing data between nodes. Depending on the
type of data, each transfer may incur a computational
cost. Thus, a high behavior tree tick frequency may be
computationally expensive and inefficient.
[0008] In light of the above, the present invention seeks
to overcome or at least alleviate the shortcomings and
disadvantages of known behavior tree implementations.
It is an object of this invention to provide an improved
system and method for controlling an apparatus by
means of behavior trees.
[0009] These objects are met by the robot and the
method of the present invention.
[0010] According to an aspect, the present invention
relates to a method for controlling an apparatus. The
method includes a step of using a behavior tree for tasks
performed by the apparatus.
[0011] By implementing a behavior tree switching be-
tween and/or executing different tasks in an autonomous
agent, such as a robot (which may be the apparatus in
embodiments of the present invention) can be structured.
Thus, a behavior tree is a means for describing complex
apparatus behaviors as a composition of sub-functions
which can be modular. The subfunctions can further be
structured as a combination of parallel and/or sequential
nodes. Thus, based on the degree of dependency of the
functions, they can be performed in parallel or in se-
quence. Behavior trees are an intrinsically hierarchical,
efficient means for creating complex control systems that
are both modular and reactive.
[0012] The apparatus can be a handling robot config-
ured to grip and move items from one location to another.
The control system of the handling robot can be com-
pletely or at least partially mapped to a behavior tree.
[0013] In one embodiment, the behavior tree compris-
es nodes including a root node, at least one control flow
node and at least one execution node and directed edg-
es. The nodes are connected with the directed edges:
the root node has one outgoing edge and no incoming
edge, each control flow node has one incoming edge and
at least one outgoing edge and each execution node has
one incoming edge and no outgoing edge. A node having
an outgoing edge is defined as a parent node in relation
to another node connected to this edge and a node hav-
ing an incoming edge is defined as a child node in relation
to another node connected to this edge. The control flow
nodes and the execution nodes are adapted to return
different states to their respective parent nodes. The
states include success, running and failure.
[0014] Furthermore, the method may include the steps
of the root node calling its child node, which is a control
flow node; the root node’s child node calling a first node;
the first node returning a first state to the root node’s child
node; the root node’s child node returning a second state
to the root node.
[0015] Typically, each node implements one function

1 2 



EP 4 040 293 A1

3

5

10

15

20

25

30

35

40

45

50

55

for executing the corresponding task or action that sets
a node-internal execution state to the value RUNNING,
SUCCESS, or FAILURE. The execution nodes can up-
date their status based on the result of the sub-action
they perform. The control flow nodes update their status
based on the status of their children. The execution state
is updated to SUCCESS if the action has been success-
fully completed, updated to FAILURE if the action could
not be completed, and updated to RUNNING if the action
is still ongoing.
[0016] The behavior tree may comprise a planner sec-
tion and the method may comprise calling the planner
section. In response to being called, the planner section
may determine a state of the apparatus and may set an
activation status of at least one activation section.
[0017] The planner section may also be referred to as
a planner subsection. The planning can be implemented
both as a single node, but also in a more complex manner,
i.e., as a section comprising different nodes, i.e., as a
subtree. The planner section can be represented as a
single task or more complex, i.e., a sequence of tasks.
The planner section can be configured to execute an au-
tomated planning technique. In particular, abstract action
representations can be used to represent the action
blocks encoded by behavior sub-trees. Thus, a modular
system of action blocks can be created, which can be
combined based on combinatorial rules implemented in
the planner section. Planning formalisms, including Plan-
ning Domain Definition Language (PDDL) or other similar
representations, can be used accordingly.
[0018] A plurality of first action blocks can be linked to
a first independent resource of the apparatus and a fur-
ther plurality of second action blocks can be linked to a
second independent resource of the apparatus. An ap-
paratus resource can be a motor function module, a sen-
sory module, a logic module, and/or a navigational mod-
ule. Practical examples include a motorized mobile base,
an object manipulator, object scanning and/or recogni-
tion modules, object tracking modules and/or power sup-
ply modules.
[0019] Action blocks can use the available resources
to execute a predefined function and/or task. Examples
pertaining to a warehouse robot can include: identify item
to pick, pick Item from shelf, place item in backpack, nav-
igate, reposition and/or dock to charger.
[0020] The resources can be independent in the sense
that they can be used at least partially simultaneously,
i.e., while moving the mobile base of a robot, the manip-
ulator can also be moved. Thus, the resources can be
conditionally independent: Depending on the current
state of the robot, resources may be prevented from be-
ing accessed simultaneously, more precisely, while a
task requiring the first independent resource is active,
other tasks requiring access to the second independent
resource may be prevented from running. The prevention
of running such sub-trees can be implemented structur-
ally by adjusting the composition of the behavior tree ac-
cordingly or supervisory due to the execution node pre-

venting specific nodes from executing. Practical exam-
ples concerning a warehouse robot include disabling
navigating while picking an item from a shelf, enabling
navigating while placing an item in the backpack. This
may be achieved by the planner section determining a
state of the apparatus, and the planner section setting
an activation status of at least one activation section
(wherein the activation section typically is a section - a
node or a subtree - of the behavior tree).
[0021] An action block can receive input data, i.e., the
type of object to be manipulated, the type of object ma-
nipulator, and/or the position of the object manipulator.
Furthermore, specific preconditions can apply to execute
an action block. For example, is the object manipulator
suitable to manipulate the type of object?, is the object
positioned at an expected location?, is the robot posi-
tioned at the correct location, where the object can be
manipulated (i.e., correct shelf)?, is the object manipu-
lator free (i.e. not occupied with a different object and/or
currently in use)?.
[0022] Once sub-trees are represented in the above-
mentioned abstract action representations, they can be
composed automatically using automated planner tech-
niques in order to dynamically condition the robot behav-
ior tree and choose the right sub-tree to use in every new
situation, i.e., after a failure has occurred. In other words,
the planner section can be configured to dynamically
change the execution of behavior tree by altering the
composition of sub-trees and/or single nodes.
[0023] A behavior tree representing a specific process
can be universal in the sense that it is compatible with at
least two structurally different apparatuses. Two different
apparatuses can be, for example, two robots with differ-
ent drive trains, gripping mechanisms, sensor arrays
and/or component latencies. The robots can be generic
mobile base robots with a manipulator built on top of it.
[0024] The state of the apparatus determined by the
planner section may depend on the current general goal
to be achieved by the apparatus and a status of the en-
vironment of the apparatus. For example, the status of
the environment may indicate the presence of a moving
object (which may be, e.g., a human in the vicinity of the
apparatus), and the general goal of the apparatus may
be, e.g., pick up an object, or travel from a first location
to a second location depending on the state of the appa-
ratus, the planner section may set the activation status
of at least one activation section of the behavior tree, and
preferably of a plurality of activation sections of the be-
havior tree.
[0025] The planner section can be configured to define
the current robot task, in particular on the basis of the
current position of the robot, the type of object to be ma-
nipulated, the type of object interaction means available
(i.e., a gripper) and the position of the object relative to
the robot, respectively object interaction means.
[0026] The planner section may also be referred to as
a planner sub section.
[0027] The state of the apparatus can comprise at least

3 4 



EP 4 040 293 A1

4

5

10

15

20

25

30

35

40

45

50

55

one of location information, relative position information
of at least one motorized apparatus element, object in-
formation of at least one object the apparatus interacts
with. Thus, such information may be taken into account
when setting the activation status of the individual acti-
vation sections. This information may thus be used to
switch on and off certain functionalities present in the
behavior tree.
[0028] The method can further include the step of the
activation section evaluating the activation status before
executing the assigned task. This may achieve the ad-
vantage of increasing the probability of executing the as-
signed task successfully, preventing harm (e.g., some
tasks may not be performed when a person is located
close to the apparatus) and/or of increasing efficiency of
the operation of the apparatus. In particular, the task may
be executed depending on the activation status.
[0029] The method can include the step of the activa-
tion section preventing execution of the assigned task
based on the activation status. This may achieve the ad-
vantage of increasing efficiency by excluding unrequired
functions from executing, rendering operation of the ap-
paratus saver and/or decreasing the likelihood of the task
to fail due to executing a function that may conflict with
other functions or the current status of the apparatus, in
particular the current environment of the apparatus.
[0030] Furthermore, the method can include the step
of the planner section determining the state of the appa-
ratus based on the status of at least one control flow node.
[0031] The planner section can be a planner node. Fur-
thermore, the planner section can be a planner subtree
of the behavior tree. That is, the planner section can be
realized either as a single node, or as a subtree compris-
ing a plurality of nodes. In particular, the planner section
can be a planner subtree with a sequence node as a
parent node, wherein that sequence node can be a child
to the root node. A plan can be generated by executing
the planner subtree and the plan can be provided to a
parent node of the planner subtree and/or as a global
result outside the behavior tree structure.
[0032] The behavior tree can comprise a plurality of
subtrees, each subtree comprising at least one control
flow node and at least one execution node. The control
flow nodes can represent a composite task which can
have multiple child tasks. Alternatively, the control flow
node can represent a decorator that wraps a single child
task. The execution nodes may also be called the leaves
of the behavior tree and update their status based on the
result of the child-task they perform. The control flow
nodes can update their status based on the status of their
children (e.g., SUCCESS, FAILURE, RUNNING).
[0033] The control flow nodes can be placed between
the root node and the execution nodes. The control flow
nodes and the execution nodes can be configured to re-
turn different states to their parents’ nodes, and the meth-
od may include the steps of the root node calling a control
flow node; the control flow node calling a first node; the
first node returning a first state to the control flow node;

and the control flow node returning a second state to the
root node. The first and second states may be equal to
or different from one another.
[0034] The method can comprise the control flow node
being called by the root node calling the planner section.
Generally, the behavior tree can be traversed periodically
and in particular in a depth-first manner, starting from the
root node to facilitate the implementation of reactive be-
havior. The root node and control flow nodes may trigger
the execution of their child nodes. The root nodes initiates
traversing the behavior tree by calling a control flow node.
In turn, the control flow node can call the planner section.
This may achieve the advantage that prior to stepping
through the remained of the behavior tree, in particular
the subtree hierarchically below the control flow node
calling the planner section, the behavior tree can be
reevaluated and/or adjusted by the planner section.
Thus, the behavior tree may be customized with respect
to the current task of the called control flow node.
[0035] The control flow node called by the root node
can be a sequence node. A sequence node can be the
first node of a subtree comprising sub-actions pertaining
to a specific task. Thus, a complex task, can be broken
down into a combination of several less complex sub-
trees. The control flow is described by the structure of
the behavior tree, thus determining the order and under
which conditions these subtrees are to be executed.
Each subtree can be executed via its designated, respec-
tively preceding control flow node.
[0036] Generally, a sequence node can call its children
in a specific order, wherein the execution cumulates in
the completion of the general task assigned to the se-
quence node.
[0037] The planner section can be called by the control
flow node called by the root node before any other node
is called by the control flow node called by the root node.
This may achieve the advantage that prior to executing
the remainder of the behavior tree, the planner section
can be called to setting the activation status of the acti-
vation sections in the behavior tree.
[0038] Alternatively, the planner section can be dis-
posed hierarchically deeper into the behavior tree. In par-
ticular, nodes relating to essential function checks of the
apparatus, i.e., a basic robot health status check can be
called before the planner section is called.
[0039] The plurality of subtrees can comprise at least
one function subtree. Each function subtree can com-
prise a function tree control flow node, an activation sec-
tion comprising at least one node being a child node of
the function tree control flow node, and a function section
comprising at least one node being a child node of the
function tree control flow node. Thus, each function of
the apparatus (e.g., robot), in particular motorized func-
tions and/or functions requiring a sensor read out, can
be mapped into the behavior tree following a predefined
structure. The function tree control flow node can serve
as the entry point to the function. Specifically, all nodes
pertaining to the execution of that specific function in the

5 6 



EP 4 040 293 A1

5

5

10

15

20

25

30

35

40

45

50

55

behavior tree can be disposed hierarchically below the
function tree control flow node. The division into the ac-
tivation section and the function section can achieve the
advantage of separating queries and acquiring the deci-
sion whether the function is to be executed into the acti-
vation section. The activation section is preferably called
prior to the function section being called. The function
section can comprise a node which, for example, exe-
cutes a motor function of the apparatus.
[0040] Furthermore, the function subtrees can be or-
dered in a specific sequence to represent a logical struc-
ture in the behavior tree. For example, an object cannot
be picked up, when the gripper currently holds another
object.
[0041] For each function subtree, the activation section
can be an activation node. Thus, the complexity of the
behavior tree can be reduced.
[0042] For each subtree, the function tree control flow
node can be a sequence node. This achieves the advan-
tage that the activation section and the function section
can be called in a specific sequence, where calling sub-
sequent nodes can depend on the result of previously
executed and in particular hierarchically parallel nodes.
Specifically, the activation section can be called prior to
the function section being called by means of a corre-
sponding sequence set in the sequence node. Thus, the
activation section (e.g., the activation node) is called first
and the subsequent nodes are only called when the ac-
tivation section is activated, i.e., provides the status "suc-
cess" to its parent node. This may be a simple and effi-
cient way to implement the activation functionality.
[0043] For each subtree, the function section can be a
lower ranking child section of the function tree control
flow node than the activation section. This can achieve
the advantage of the function section being called in de-
pendence of the result of the activation section. Thus,
the function tree control flow node can call or not call the
function section based on the result of the activation sec-
tion. Thus, the function section can base calling its child
nodes on the result of the activation section.
[0044] The at least one function subtree can be a plu-
rality of function subtrees. In particular, a plurality of func-
tions pertaining a specific resource of the apparatus can
be disposed hierarchically parallel to one another. Fur-
thermore, a plurality of sub functions which together form
a greater function can be grouped and structured into a
function subtree. Thus, the organizational structure of a
function subtree can be self-repeating to build a complex
function by combining a plurality of function subtrees.
[0045] The at least one activation section for which an
activation status is set by the planner section can be at
least one activation section of the at least one function
subtree. This may achieve the advantage of the planner
section being able to control the execution of a function
via setting an activation status. Thus, when the respec-
tive function subtree is called, i.e., by calling the tree con-
trol flow node and subsequently the activation section of
the respective function subtree, the activation status can

be checked and the result of the activation section can
be based on the activation status. The activation section
can determine whether the function available for execu-
tion via the function section should be executed based
on the activation status.
[0046] The at least one activation section for which an
activation status is set by the planner section can be a
plurality of activation sections of the plurality of subtrees,
and preferably all activation sections of the plurality of
subtrees. This may achieve the advantage that the plan-
ner section can control the execution of each function by
setting an activation status. The activation status can
comprise a plurality of activation information, wherein
each activation information pertains to the execution of
a respective function subtree. Thus, the planner section
can determine which functions to execute to complete
the current task.
[0047] The apparatus can comprise a hardware re-
source and the method can include the step of the at
least one function subtree manipulating the hardware re-
source when executed. This may provide the capability
of the apparatus to interact with its environment. The
hardware resource can be any type of powered device
capable of executing a measurable impact on the envi-
ronment of the apparatus. Preferably, the hardware re-
source is a motorized component, wherein the function
subtree is configured to control the motorized component
to move a part of the motorized component relative to its
environment and/or to move the apparatus relative to its
environment. More broadly, the hardware resource can
be powered electrically and/or hydraulically and an en-
vironment manipulation can be defined, for example, as
moving parts of the environment, rearranging objects in
the environment, removing parts of the environment, in
particular, remove to store on or within the apparatus.
The manipulation of the hardware resource can be de-
fined as operating the hardware resource via control
commands, which can be contained in a program exe-
cuted by the function section and/or function node within
the function subtree.
[0048] Furthermore, the method can comprise the step
of the function section of a subtree accessing the hard-
ware resource and/or manipulating the hardware re-
source. This can achieve the advantage of limiting ac-
cess to the hardware resource to the function section.
Thus, any safeguards pertaining to the manipulation of
the hardware resource can be checked within nodes hi-
erarchically above and/or within nodes called prior to call-
ing the function section. The function section may further
include safeguards checked during executing the hard-
ware manipulation. For example, when part of the mo-
torized component is moved relative to the environment
continuous, respectively periodic, collision checks can
be performed. Furthermore, the manipulation of a hard-
ware resource can be an activation of a motor function,
reading out sensor data or activating a sensor to record
sensor data. Accessing the hardware resource can be a
precursor to manipulating the hardware resource or can

7 8 



EP 4 040 293 A1

6

5

10

15

20

25

30

35

40

45

50

55

include manipulating the hardware resource.
[0049] The hardware resource can be one of a motor-
ized element configured to move the apparatus relative
to its environment, a motorized element configured to
manipulate an object separate from the apparatus, and
a sensor element configured to capture the environment
of the apparatus. The manipulation of an object can com-
prise moving the object relative to the object environ-
ment, rotating the object, compressing the object and/or
connecting the motorized element to the object. A con-
nection can be achieved via a force-locking mechanism,
magnetic attraction and/or frictionally and/or gravity as-
sisted resting of the object against part of the apparatus,
specifically part of the hardware resource, i.e., a motor-
ized component.
[0050] The method can comprise the step of the func-
tion section of a subtree executing at least one of locating
an object, manipulating the object, moving the object,
gripping the object, navigating, repositioning, docking at
a charging station, emergency stop. Thus, a single func-
tion can be executed by a function section or a plurality
of functions can be executed by the function section. In
particular, a group of functions can be executed by the
function section representing a logically connected part
of the overall task to be achieved by completely stepping
through the behavior tree. For example, the function sub-
tree can comprise the steps pertaining to the acquisition
of an object: locating the object, positioning the motorized
component to grip the object, moving the object to a stor-
age component of the apparatus. The overall task can
then be moving the object from one location to another,
in particular to a location that is a distance away from the
original location that is greater than the reach of the mo-
torized component.
[0051] The behavior tree can comprise a recovery plan
section and the method can include the step of the re-
covery plan section receiving and/or generating a recov-
ery plan when called. Generating a recovery plan can be
defined as determining which function sections to exe-
cute as a next step when executing the main parent node
of the plurality of function sections. The recovery plan
section can receive a recovery plan, in particular a re-
covery plan comprising an alternate task to be executed
or an alternate version of the original task to be executed.
The recovery plan section can achieve the advantage
that the task can be completed although the main task
to be executed via the loop node may have initially failed.,
by providing an alternate solution and/or an alternate
task. Thus, a complete failure of the behavior tree can
be averted by executing the recovery plan section.
[0052] The recovery plan section can be a recovery
plan node or subtree. Having only a recovery plan node
may achieve the advantage that the recovery plan does
not require further child nodes to be executed. This can
speed up the recovery process as executing further
nodes can incur further delays due to the nodes requiring
a run time and/or due to subsequent nodes requiring fur-
ther results that may incur a delay. The recovery plan

being a subtree can achieve the advantage of a struc-
tured recovery plan comprising a plurality of connected
nodes. Each node of the plurality of nodes can represent
an action to be executed to complete the recovery plan
to achieve the set goal and/or avoiding a complete failure
of the behavior tree.
[0053] The behavior tree can comprise a sequence
node and a selector node. The selector node can be a
child node of the sequence node and the method can
comprise the step of the sequence node calling the se-
lector node last in the sequence of calling its child nodes.
In particular, all currently planned functions according to
the activation status and the composition of function sub-
trees can be called prior to calling the selector node. The
selector node can be configured to acquire a new task
and/or a new plan.
[0054] The behavior tree can comprise a plan activa-
tion section which is a child section of the selector node.
The method can comprise the step of the selector node
generating or receiving a plan step information repre-
senting a task or a next step of the current task of the
apparatus. The plan activation section can be configured
to retrieve the task or the next step to be executed of the
current task. The plan activation section can further be
configured to receive a belief state of the apparatus as
an input and to output the plan to activate the subtrees
to be executed when the plan activation section com-
pletes. The belief state of the apparatus can represent
the current status of the apparatus, comprising at least
part of the information regarding the environment of the
apparatus available to the apparatus via its sensors and
or indirectly from the history of its previously executed
functions. The belief state can comprise the position
and/or orientation of the apparatus in its environment
and/or the position and/or orientation of a resource of the
apparatus, i.e., a motorized component. Additionally, the
belief state can comprise information regarding the inter-
action with a specific, in particular task related, object
positioned in the environment. For example, whether the
object is gripped by the motorized component, and/or the
orientation of the motorized component in relation to the
object.
[0055] This plan can be divided in steps or tasks,
wherein the task can comprise multiple steps. The plan
activation section can be configured to sequentially re-
quest a plurality of steps, respectively tasks from the plan-
ner section. The sequentially requested steps and/or
tasks can form a complete plan to be executed by the
apparatus via the behavior tree control.
[0056] The plan activation section can be configured
to request a new step and/or task from the planner section
after the previous step has been completed. The previous
step can complete by calling the loop node. For each call
of the loop node, the function subtrees or their respective
function sections can be activated or deactivated by the
apparatus status.
[0057] Thus, the activation plan section can be config-
ured to verify each next step or task to be executed in

9 10 



EP 4 040 293 A1

7

5

10

15

20

25

30

35

40

45

50

55

terms of the overall plan to be completed and/or to update
the apparatus status according to the received step or
task. This may achieve the advantage that changes of
the plan can be detected and implemented. This can also
represent a safeguard to confirm that the plan has not
changed.
[0058] The method can include the step of the plan
activation section calling the planner section at each in-
stance the plan activation section is called, wherein the
activation section is configured to compare a step re-
ceived from the planner section to a previously planned
step to determine if the plan has changed. After the ex-
ecution of a first or previous step, in particular by calling
the loop node, the plan activation section can check if
the plan has not changed by calling the planner and re-
trieving another plan.
[0059] The behavior tree can comprise a plan comple-
tion section and the method can include the step of the
plan completion section checking if the last step of the
plan is executed and if the last step of the plan succeeded.
The plan completion section can be disposed as a child
node of the selector node and/or hierarchically parallel
to the plan activation section. The plan completion sec-
tion can be called sequentially after the plan activation
section is called and/or completed. In the case of the last
step failing and not receiving an alternative step, task or
plan by the planner section, the plan completion section
may return FAILURE. Subsequently the selector node,
recovery node and finally the root node may fail. A failed
root node may require a reset, in particular a manual
reset of the apparatus.
[0060] The behavior tree can comprise a loop node,
and the recovery plan section is provided as a child node
hierarchically parallel to the loop node. A subtree repre-
senting a current task of the apparatus can be provided
as a child node to the loop node. The loop node can be
a primary node which is disposed hierarchically above
all apparatus resource nodes, function subtrees and/or
the selector node. The loop node can be configured to
execute its child node in a loop for a number of times as
long as the loop node succeeds. The loop node may call
its child node indefinitely as long as each iteration suc-
ceeds. The loop node can be configured to succeed if its
child node succeeds every time, and to fail if its child
node fails once.
[0061] The method can include the step of the recovery
plan section executing a recovery sequence. The recov-
ery sequence can achieve the advantage of avoiding a
complete failure of the behavior tree. In particular, the
recovery sequence can include one of resetting function
parameters of the apparatus pertaining to functions avail-
able via function subtrees, backtracking previously exe-
cuted steps, i.e., executing functions with inverse param-
eters and/or in reverse order relative to their execution
order, executing an apparatus retrieval which enables
the apparatus to return to a known location and/or reset-
ting the current task.
[0062] The behavior tree can comprise a recovery

node and the loop node and the recovery plan section
can be child sections of the recovery node. Furthermore,
the method can include the step of the recovery node
calling the loop node and the recovery node calling the
recovery plan section, when the loop node fails.
[0063] The behavior tree can comprise a parallel node,
which is configured to have two (or more) child nodes
attached and configured call the child nodes in parallel.
The method can include the step of the parallel node
calling its child nodes simultaneously. This may achieve
the advantage of executing tasks simultaneously. When
one of the child nodes fails, the parallel node may termi-
nate all other child nodes that are still running. The ter-
mination of the node can be implemented as a request
to the node by the parallel node to terminate its current
task. Child nodes of the parallel nodes are not necessarily
run exactly parallel. However, the relative starting and/or
ending time of the execution of a child node can be in-
consequential to the starting and/or ending time of every
other child node. Thus, the sequence of calling the child
nodes of the parallel node can be arbitrary.
[0064] The method can further include the step of the
parallel node setting its result to failed when one of its
child nodes fails and setting its result to succeeded when
all child nodes succeed. This mode is also known as Par-
allelAll.
[0065] Alternatively, the parallel node may succeed as
soon as one child node succeeds. This mode is also
known as ParallelOne.
[0066] According to a further alternative embodiment,
the parallel node can call all children in parallel and it
may fail if all child nodes fail and succeed if one child
node succeeds. This mode is also known as ParallelSe-
lector.
[0067] The root node calling its child node can com-
prises the root node calling its child node with a constant
tick frequency, wherein the inverse of the tick frequency
defines a constant tick interval. Ticking can be defined
as executing the child node and update the status of the
root node on the result of the execution of the child node.
[0068] Traversing the behavior tree at a constant tick
frequency can imply that to satisfy the timing require-
ments of the different actions controlled by the behavior
tree, the maximum required frequency of all the actions
need to be adopted by the entire tree. Thus, a single child
node requiring a high frequency can lead to the whole
behavior tree being ticked at that high frequency to keep
the timing of the behavior tree coherent.
[0069] In particular, the tick frequency can be lower
than a required update frequency of a child node. For
example, a child node pertaining to sensor monitoring
may require a constant tick frequency of 1 kHz but the
tick frequency of the behavior tree may be an order of
magnitude lower, i.e., smaller than 100 Hz.
[0070] The step of using a behavior tree can comprise
an executor application executing the behavior tree. The
executor application can be configured to initiate the root
node calling its child node and thus initiate a complete

11 12 



EP 4 040 293 A1

8

5

10

15

20

25

30

35

40

45

50

55

parsing of the behavior tree. In particular, a request by
the executor application to the root node can supersede
any constant tick frequency. Thus, the request is proc-
essed immediately and in turn the behavior tree parsed
immediately. More specifically, the executor application
may not be bound by the set tick frequency and may
implement an event-based trigger mechanism to calling
the child node and all subsequent nodes of the root node.
[0071] The method can comprise a node providing a
tick request to the executor application and, in response
thereto, the executor application causing the root node
to call its child node at a time. A time difference of this
time minus the last previous time when the root node
called its child node can be smaller than the constant tick
interval.
[0072] The constant tick frequency can be in the range
of 0.1 Hz to 100 Hz, preferably 0.2 Hz to 10 Hz. The tick
frequency can represent an update interval of the appa-
ratus, respectively the behavior tree. The constant tick
frequency can be lower, preferably at least an order of
magnitude lower than an update frequency of a node.
The update frequency of the node may be determined
by the type of hardware, the node interacts with. Thus,
a constant update frequency achieves the advantage of
a higher energy efficiency without compromising respon-
siveness of the system. Each node may, independent of
the constant tick frequency, still request a tick of the be-
havior tree outside the tick intervals determined by the
constant tick frequency.
[0073] As an example, consider that the constant tick
interval is 1 s, i.e., the constant tick frequency is 1 Hz.
Thus, the behavior tree is usually traversed once per sec-
ond, which may be sufficient for some functions. For ex-
ample, in case a robot is used in a warehouse, it may be
sufficient if the robot checks once per second whether it
received a request to transport an item from a first loca-
tion to a delivery location. However, there may be certain
functions for which it is advantageous that a faster re-
sponse is possible. Consider, e.g., that the robot, after
having received a request to pick up an object, travels to
a location of the object and senses the presence of a
human. In this scenario, safety mechanisms may apply.
For example, the robot may brake, or may set off an alarm
warning the human. In such a scenario, it may be desir-
able that such a reaction is initiated faster than with the
constant tick interval of 1 s. In embodiments of the
present invention, this is possible by the anode providing
a tick request to the executor application and the executor
application causing the root node to tick its child node
"immediately", i.e., without waiting the constant tick in-
terval after the last tick. This may ensure a high respon-
siveness of the apparatus.
[0074] At the same time, the described scheme may
be very efficient, as the behavior tree may normally be
operated with a constant (and relatively low) frequency.
Thus, the presently described technology may allow for
a very efficient operation, while at the same time allowing
for a high responsiveness.

[0075] According to an embodiment the method can
comprise the step of the node providing a tick request to
the executor application based on a status change of the
node, a status change of one of its child nodes and/or a
status change of a subtree disposed hierarchically below
the node. This may achieve the advantage of realizing
an event-based polling mechanism. Every node com-
prised in the behavior tree may request the executor ap-
plication to tick the behavior tree at any moment in time.
When ticking the behavior tree, a recomputation of the
state of the behavior tree, respectively the apparatus
and/or task represented by the behavior tree is triggered,
when a specific event is detected by any node composing
the behavior tree. If no event is detected and thus no
particular tick request arrives to the executor, a constant
tick frequency is adopted.
[0076] According to an embodiment, the method can
include the step of the executor application calling the
root node independent of the constant tick interval upon
receiving a tick request. This may achieve the advantage
that the behavior tree may be executed immediately upon
receiving a tick request and an update of the apparatus
status can be achieved with a comparable latency when
comparing to a high constant tick frequency, wherein a
high constant tick frequency refers to a tick frequency at
least an order of magnitude higher than the implemented
constant tick frequency in combination with the node-
based tick request mechanism.
[0077] According to an embodiment, each of a plurality
of the nodes may comprise at least one data element
indicator indicating at least one data element related to
the respective node. Data elements can be passed be-
tween nodes via their shared link connections. In partic-
ular, the data may be transferred between nodes upon
completion of the sending node. A data element indicator
can achieve the advantage that the respective data ele-
ment can be accessible to at least two nodes of the be-
havior tree simultaneously. For example, one node may
currently execute a task and change the value of the at
least one data element. Another node may access the
at least one data element via the at least one data element
indicator. Access to the at least one data element via the
at least one data element indicator can be independent
of the state (i.e., SUCCESS, FAILURE, RUNNING) of
the node the at least one data element is related to. Thus,
the advantage can be achieved that data can be passed
between nodes during the execution of a node, which in
particular can modify the value of the at least one data
element during its execution. The data element indicator
can be accessible to any node being called.
[0078] The at least one data element indicator can
comprise at least one required input value data indicator.
Each required input value data indicator can indicate a
data element whose value is required to be passed to
the respective node for execution of the respective node.
The connections between the nodes in the behavior tree
specify the control flow and thereby the order in which
the tasks associated with each node, respectively sub-

13 14 



EP 4 040 293 A1

9

5

10

15

20

25

30

35

40

45

50

55

tree are performed. That is, the directed edges discussed
before relate to the control flow. However, this control
flow is generally independent of the data flow, i.e., the
rules indicating if and how data can be shared between
different parts of the behavior tree. In some implemen-
tations, specific data elements can be passed between
nodes. The specific data elements passed between
nodes may not be available globally, to avoid conflicts
with specific data elements of other nodes, respectively
tasks. A node can be configured to define which data
elements will serve as their input and which data ele-
ments will serve as their output. Data elements specified
as an input can be read by the node, and data elements
that are specified as an output can be written to by the
node. The required input value indicator can be available
to the executor application so that the executor applica-
tion can take the data requirements into account at a
compilation time (i.e., before the behavior tree is execut-
ed). This can achieve the advantage that it can be verified
that the required input data is actually available prior to
the execution of the node (i.e., produced by another task
and/or node).
[0079] Furthermore, the at least one data element in-
dicator can comprise at least one required input refer-
ence data indicator and each required input reference
data indicator indicates a reference to a data element,
which reference needs to be passed to the respective
node for execution of the respective node. The input ref-
erence data indicator can indicate to the executor appli-
cation that the respective data element is to be made
available to a node via reference. Thus, not the data el-
ement itself may be passed to the node, but a reference
pointing to the data element. This can achieve the ad-
vantage of reducing the amount of data necessary to be
transferred between nodes. Decreasing the amount of
data transferred between nodes can increase the speed
at which the behavior tree can be executed
[0080] The at least one data element indicator can
comprise at least one constant value data indicator. Each
constant value data indicator can indicate a data element
whose value is constant at runtime and whose value is
required to be passed to the respective node for execu-
tion of the respective node. The constant value data in-
dicator can indicate to the executor application that the
respective data element may not change its value during
execution. Thus, the data element labeled by a constant
value data indicator can be set during compilation. Fur-
ther checks regarding change and/or availability of the
data element can be omitted.
[0081] The at least one data element indicator can
comprise at least one changing value data indicator.
Each changing value data indicator indicates a data el-
ement whose value is required to be updated whenever
the respective node is called. That is, data elements in-
dicated by a changing value data indicator are updated
whenever the respective node is ticked. This may be dif-
ferent to prior art approaches, where data elements were
only updated once a node succeeded. Instead, in imple-

mentations of the present technology, such data ele-
ments (indicated by a changing value data indicator) are
updated at every tick of the node, i.e., also when the
respective node is still running (and has not yet returned
that it succeeded). This may be advantageous, e.g., in
case two nodes run in parallel and both make use of a
changing data element.
[0082] The at least one data element indicator may
comprise at least one optional input value data indicator,
wherein each optional input value data indicator indicates
a data element whose value is not required to be passed,
but can be passed, to the respective node for execution
of the respective node. The optional input value data in-
dicator can indicate to the executor application that the
respective data element can be missing when executing
the respective node that comprises the respective data
element as an input. Thus, the node may evaluate the
data element being indicated as an optional input when
the respective data element is present, but the execution
may not fail, when the respective data element is not
present.
[0083] The at least one data element indicator may
comprise at least one output data indicator, wherein each
output data indicator indicates a data element accessible
by at least one node other than the node comprising the
respective output data indicator. Data elements that are
specified as output can be written to by the node. A data
element can be specified as an input and as an output,
thus the node is required to pass the value through. Ad-
ditionally, the node can modify the data element accord-
ing the associated task executed when the node is called.
[0084] The apparatus may move freely in space. The
apparatus may move along a two-dimensional surface.
However, the surface can be curved and/or comprise
steps. Generally, any terrain may be traversed according
to the capability of a moving base of the apparatus. The
apparatus can also be an airborne device and thus can
be configured to orient itself and navigate in a three-di-
mensional space.
[0085] The apparatus may be a robot. The robot can
be an electro-mechanical machine, capable of making
decisions based on its sensory input and translate the
sensory input into an action to be performed. Thus, a
robot can make a decision based on its environment and
may act, within its parameters, independently from ex-
ternal control.
[0086] The recovery node can be configured to exe-
cute a recovery task. A Recovery task executes the first
child node which can represent a main task and will call
the other child nodes one after the other to recover from
a failure of the main task. If the first child succeeds, the
recovery task succeeds as well and no further child nodes
are called. If the first child node fails, it continues with the
other child nodes until one of them succeeds. If all child
nodes fail, the recovery task fails as well. A recovery node
can increase the resilience of the apparatus to failure due
to changing environmental conditions and/or changes of
the underlying hardware. Due to environmental changes,

15 16 



EP 4 040 293 A1

10

5

10

15

20

25

30

35

40

45

50

55

preconceived primary actions may fail and executing
tasks for recovering from failures may account for large
parts of a robot’s control program.
[0087] The present invention also relates to a software
product, configured to perform the method as described
before.
[0088] In particular, the software product may be con-
figured to perform the method as described before, when
run on an assembly comprising a data processing system
and the apparatus.
[0089] It will be understood that the software product
may typically be run on the data processing system. This
data processing system may be part of the apparatus, or
may be external to the apparatus and both configurations
(and any other configuration, e.g., where the data
processing system is partly located on the apparatus and
partly external to the apparatus) should be understood
to be comprised by the assembly comprising the data
processing system and the apparatus.
[0090] The invention is further described with the fol-
lowing numbered embodiments.
[0091] Below, method embodiments will be discussed.
These embodiments are abbreviated by the letter "M"
followed by a number. Whenever reference is herein
made to "method embodiments", these embodiments are
meant.

M1. A method for controlling an apparatus, wherein
the method includes a step of using a behavior tree
for tasks performed by the apparatus.

M2. The method in accordance with the preceding
embodiment, wherein the behavior tree comprises
nodes including a root node, at least one control flow
node and at least one execution node and directed
edges, wherein the nodes are connected with the
directed edges,
wherein the root node has one outgoing edge and
no incoming edge, each control flow node has one
incoming edge and at least one outgoing edge and
each execution node has one incoming edge and no
outgoing edge, wherein a node having an outgoing
edge is defined as a parent node in relation to an-
other node connected to this edge and a node having
an incoming edge is defined as a child node in rela-
tion to another node connected to this edge,
wherein the control flow nodes and the execution
nodes are adapted to return different states to their
parents nodes, the states including success, running
and failure, the method including the steps of

the root node calling its child node, which is a
control flow node;
the root node’s child node calling a first node;
the first node returning a first state to the root
node’s child node;
the root node’s child node returning a second
state to the root node.

M3. The method according to the preceding embod-
iment,
wherein the behavior tree comprises a planner sec-
tion,
and wherein the method comprises calling the plan-
ner section, wherein in response to being called, the
planner section determines a state of the apparatus
and sets an activation status of at least one activation
section.

M4. The method according to the preceding embod-
iment, wherein the state of the apparatus comprises
at least one of location information, relative position
information of at least one motorized apparatus el-
ement, object information of at least one object the
apparatus interacts with.

M5. The method according to any of the preceding
embodiments with the features of M3, the method
including the step of the activation section evaluating
the activation status before executing the assigned
task.

M6. The method according to any of the preceding
embodiments with the features of M3, the method
including the step of the activation section preventing
execution of the assigned task based on the activa-
tion status.

M7. The method according to any of the preceding
embodiments with the features of M3, the method
including the step of the planner section determining
the state of the apparatus based on the status of at
least one control flow node.

M8. The method according to any of the preceding
embodiments with the features of embodiment M3,
wherein the planner section is a planner node.

M9. The method according to any of the preceding
embodiments with the features of embodiment M2,
wherein the behavior tree comprises a plurality of
subtrees, each subtree comprising at least one con-
trol flow node and at least one execution node.

M10. The method according to any of the preceding
embodiments with the features of embodiments M3
and M9, wherein the planner section is a planner
subtree.

M11. The method according to any of the preceding
embodiments with the features of embodiment M3,
wherein the method comprises
the control flow node called by the root node calling
the planner section.

M12. The method according to any of the preceding
embodiments with the features of embodiment M2,

17 18 



EP 4 040 293 A1

11

5

10

15

20

25

30

35

40

45

50

55

wherein the control flow node called by the root node
is a sequence node.

M13. The method according to any of the preceding
embodiments with the features of embodiment M11,
wherein the planner section is called by the control
flow node called by the root node before any other
node is called by the control flow node called by the
root node.

M14. The method according to any of the preceding
embodiments with the features of embodiment M9,
wherein the plurality of subtrees comprises at least
one function subtree, wherein each function subtree
comprises

a function tree control flow node,
an activation section comprising at least one
node being a child node of the function tree con-
trol flow node, and
a function section comprising at least one node
being a child node of the function tree control
flow node.

M15. The method according to the preceding em-
bodiment,
wherein, for each function subtree, the activation
section is an activation node.

M16. The method according to any the 2 preceding
embodiments,
wherein, for each subtree, the function tree control
flow node is a sequence node.

M17. The method according to any of the 3 preceding
embodiments,
wherein, for each subtree, the function section is a
lower ranking child section of the function tree control
flow node than the activation section.

M18. The method according to the any of the pre-
ceding embodiments with the features of embodi-
ment M14, wherein the at least one function subtree
is a plurality of function subtrees.

M19. The method according to any of the preceding
embodiments with the features of embodiments M3
and M10,
wherein the at least one activation section for which
an activation status is set by the planner section is
at least one activation section of the at least one
function subtree.

M20. The method according to the preceding em-
bodiment and with the features of embodiment M18,
wherein the at least one activation section for which
an activation status is set by the planner section is
a plurality of activation sections of the plurality of

subtrees, and preferably all activation sections of the
plurality of subtrees.

M21. The method according to any of the preceding
embodiments with the features of M14, wherein the
apparatus comprises a hardware resource, the
method including the step of the at least one function
subtree manipulating the hardware resource when
executed.

M22. The method according to the preceding em-
bodiment, the method including the step of the func-
tion section of a subtree accessing the hardware re-
source and/or manipulating the hardware resource.

M23. The method according to any of the preceding
embodiments with the features of M21, wherein the
hardware resource is one of a motorized element
configured to move the apparatus relative to its en-
vironment, a motorized element configured to ma-
nipulate an object separate from the apparatus, and
a sensor element configured to capture the environ-
ment of the apparatus.

M24. The method according to any of the preceding
embodiments with the features of M14, the method
including the step of the function section of a subtree
executing at least one of locating an object, manip-
ulating the object, moving the object, gripping the
object, navigating, repositioning, docking at a charg-
ing station, emergency stop.

M25. The method according to any of the preceding
embodiments, wherein the behavior tree comprises
a recovery plan section, the method including the
step of the recovery plan section receiving and/or
generating a recovery plan when called.

M26. The method according to the preceding em-
bodiment, wherein the recovery plan section is a re-
covery plan node or subtree.

M27. The method according to any of the preceding
embodiments with the features of M2, wherein the
behavior tree comprises a sequence node and a se-
lector node, wherein the selector node is a child node
of the sequence node and the method includes the
step of the sequence node calling the selector node
last in the sequence of calling its child nodes.

M28. The method according to the preceding em-
bodiment, wherein the behavior tree comprising a
plan activation section wherein the plan activation
section is a child section of the selector node, the
method including the step of the selector node gen-
erating or receiving a plan step information repre-
senting a task or a next step of the current task of
the apparatus.

19 20 



EP 4 040 293 A1

12

5

10

15

20

25

30

35

40

45

50

55

M29. The method according to the preceding em-
bodiment, the method including the step of the plan
activation section calling the planner section at each
instance the plan activation section is called, wherein
the activation section is configured to compare a step
received from the planner section to a previously
planned step.

M30. The method according any of the preceding
embodiments with the features of M28, wherein the
behavior tree comprises a plan completion section,
the method including the step of the plan completion
section checking if the last step of the plan is exe-
cuted and if the last step of the plan succeeded,
wherein the plan completion section is disposed as
a child node of the selector node and/or hierarchi-
cally parallel to the plan activation section.

M31. The method according to any of the previous
embodiments with the features of M25, the behavior
tree comprising a loop node, wherein the recovery
plan section is provided as a child node hierarchically
parallel to the loop node, wherein a subtree repre-
senting a current task of the apparatus is provided
as a child node to the loop node.

M32. The method according to any of the previous
embodiments with the features of M25, the method
including the step of the recovery plan section exe-
cuting a recovery sequence.

M33. The method according to any of the previous
embodiments with the features of M25 and M31, the
behavior tree comprising a recovery node, wherein
the loop node and the recovery plan section are child
sections of the recovery node, the method including
the step of the recovery node calling the loop node
and the recovery node calling the recovery plan sec-
tion, when the loop node fails.

M34. The method according to any of the preceding
embodiments, wherein the behavior tree comprises
a parallel node, the method including the step of the
parallel node calling its child nodes simultaneously.

M35. The method according to any of the preceding
embodiments with the features of M34, the method
including the step of the parallel node setting its result
to failed when one of its child nodes fails and setting
its result to succeeded when all child nodes succeed.

M36. The method according to any of the preceding
embodiments with the features of embodiment M2,
wherein the root node calling its child node compris-
es
the root node calling its child node with a constant
tick frequency, wherein the inverse of the tick fre-
quency defines a constant tick interval.

M37. The method according to any of the preceding
embodiments,
wherein the step of using a behavior tree comprises
an executor application executing the behavior tree.

M38. The method according to the preceding em-
bodiments and with the features of the penultimate
embodiment,
wherein the method comprises
a node providing a tick request to the executor ap-
plication,
in response thereto, the executor application caus-
ing the root node to call its child node at a time,
wherein a time difference of this time minus the last
previous time when the root node called its child node
is smaller than the constant tick interval.

M39. The method according to any of the preceding
embodiments with the features of embodiment M36,
wherein the constant tick frequency is in the range
of 0.1 Hz to 100 Hz, preferably 0.2 Hz to 10 Hz.

M40. The method according to any of the preceding
embodiments with the features of M38, wherein the
node provides a tick request to the executor appli-
cation based on a status change of the node, a status
change of one of its child nodes and/or a status
change of a subtree disposed hierarchically below
the node.

M41. The method according to any of the preceding
embodiments with the features of M38, the method
including the step of the executor application calling
the root node independent of the constant tick inter-
val upon receiving a tick request.

M42. The method according to any of the preceding
embodiment with the features of embodiment M2,
wherein each of a plurality of the nodes comprises
at least one data element indicator indicating at least
one data element related to the respective node.

M43. The method according to the preceding em-
bodiment, wherein the at least one data element in-
dicator comprises
at least one required input value data indicator,
wherein each required input value data indicator in-
dicates a data element whose value is required to
be passed to the respective node for execution of
the respective node.

M44. The method according to any of the 2 preceding
embodiments, wherein the at least one data element
indicator comprises
at least one required input reference data indicator,
wherein each required input reference data indicator
indicates a reference to a data element, which ref-
erence needs to be passed to the respective node

21 22 



EP 4 040 293 A1

13

5

10

15

20

25

30

35

40

45

50

55

for execution of the respective node.

M45. The method according to any of the 3 preceding
embodiments, wherein the at least one data element
indicator comprises
at least one constant value data indicator, wherein
each constant value data indicator indicates a data
element whose value is constant at runtime and
whose value is required to be passed to the respec-
tive node for execution of the respective node.

M46. The method according to any of the 4 preceding
embodiments, wherein the at least one data element
indicator comprises
at least one changing value data indicator, wherein
each changing value data indicator indicates a data
element whose value is required to be updated
whenever the respective node is called.

M47. The method according to any of the 5 preceding
embodiments, wherein the at least one data element
indicator comprises
at least one optional input value data indicator,
wherein each optional input value data indicator in-
dicates a data element whose value is not required
to be passed, but can be passed, to the respective
node for execution of the respective node.

M48. The method according to any of the 6 preceding
embodiments, wherein the at least one data element
indicator comprises
at least one output data indicator, wherein each out-
put data indicator indicates a data element accessi-
ble by at least one node other than the node com-
prising the respective output data indicator.

M49. The method according to any of the preceding
embodiments, wherein the apparatus moves freely
in space.

M50. The method according to any of the preceding
embodiments, wherein the apparatus is a robot.

[0092] Below, system embodiments will be discussed.
These embodiments are abbreviated by the letter "S" fol-
lowed by a number. Whenever reference is herein made
to "system embodiments", these embodiments are
meant.

S1. A system for controlling an apparatus, wherein
the system comprises a processing module config-
ured to use a behavior tree for tasks performed by
the apparatus.

S2. The system in accordance with the preceding
embodiment, wherein the behavior tree comprises
nodes including a root node, at least one control flow
node and at least one execution node and directed

edges,
wherein the nodes are connected with the directed
edges,
wherein the root node has one outgoing edge and
no incoming edge, each control flow node has one
incoming edge and at least one outgoing edge and
each execution node has one incoming edge and no
outgoing edge, wherein a node having an outgoing
edge is defined as a parent node in relation to an-
other node connected to this edge and a node having
an incoming edge is defined as a child node in rela-
tion to another node connected to this edge,
wherein the control flow nodes and the execution
nodes are adapted to return different states to their
parent’s nodes, the states including success, run-
ning and failure, wherein the system is configured to
perform a method including the steps of

the root node calling its child node, which is a
control flow node;
the root node’s child node calling a first node;
the first node returning a first state to the root
node’s child node;
the root node’s child node returning a second
state to the root node.

S3. The system according to the preceding embod-
iment,
wherein the behavior tree comprises a planner sec-
tion,
and wherein the processing module is configured to
call the planner section when stepping through the
behavior tree, wherein in response to being called,
the planner section determines a state of the appa-
ratus and sets an activation status of at least one
activation section.

S4. The system according to the preceding embod-
iment, wherein the state of the apparatus comprises
at least one of location information, relative position
information of at least one motorized apparatus el-
ement, object information of at least one object the
apparatus interacts with.

S5. The system according to any of the preceding
system embodiments with the features of S3, where-
in the processing module is configured to evaluate
the activation status before executing the assigned
task by executing the activation section.

S6. The system according to any of the preceding
system embodiments with the features of S3, where-
in the processing module is configured to prevent
the execution of the assigned task based on the ac-
tivation status by means of executing the activation
section.

S7. The system according to any of the preceding

23 24 



EP 4 040 293 A1

14

5

10

15

20

25

30

35

40

45

50

55

system embodiments with the features of S3, where-
in the processing module is configured to determine
the state of the apparatus based on the status of at
least one control flow node by means of executing
the planner section.

S8. The system according to any of the preceding
system embodiments with the features of embodi-
ment S3, wherein the planner section is a planner
node.

S9. The system according to any of the preceding
system embodiments with the features of embodi-
ment S2, wherein the behavior tree comprises a plu-
rality of subtrees, each subtree comprising at least
one control flow node and at least one execution
node.

S10. The system according to any of the preceding
system embodiments with the features of embodi-
ments S3 and S9, wherein the planner section is a
planner subtree.

S11. The system according to any of the preceding
system embodiments with the features of embodi-
ment S3, wherein the processing module is config-
ured to call the planner section via calling the root
node and subsequently calling the control flow node.

S12. The system according to any of the preceding
system embodiments with the features of embodi-
ment S2, wherein the control flow node called by the
root node is a sequence node.

S13. The system according to any of the preceding
system embodiments with the features of embodi-
ment S11,
wherein the processing module is configured to call
the planner section via calling the root node and sub-
sequently calling the control flow node before calling
any other child nodes of the control flow node.

S14. The system according to any of the preceding
system embodiments with the features of embodi-
ment S9,
wherein the plurality of subtrees comprises at least
one function subtree,
wherein each function subtree comprises

a function tree control flow node,
an activation section comprising at least one
node being a child node of the function tree con-
trol flow node, and
a function section comprising at least one node
being a child node of the function tree control
flow node.

S15. The system according to the preceding embod-

iment,
wherein, for each function subtree, the activation
section is an activation node.

S16. The system according to any the 2 preceding
embodiments,
wherein, for each subtree, the function tree control
flow node is a sequence node.

S17. The system according to any of the 3 preceding
embodiments,
wherein, for each subtree, the function section is a
lower ranking child section of the function tree control
flow node than the activation section.

S18. The system according to the any of the preced-
ing system embodiments with the features of em-
bodiment S14, wherein the at least one function sub-
tree is a plurality of function subtrees.

S19. The system according to any of the preceding
system embodiments with the features of embodi-
ments S3 and S10,
wherein the at least one activation section for which
an activation status is set by the planner section is
at least one activation section of the at least one
function subtree.

S20. The system according to the preceding embod-
iment and with the features of embodiment S18,
wherein the at least one activation section for which
an activation status is set by the planner section is
a plurality of activation sections of the plurality of
subtrees, and preferably all activation sections of the
plurality of subtrees.

S21. The system according to any of the preceding
system embodiments with the features of S14, com-
prising the apparatus, wherein the apparatus com-
prises a hardware resource, wherein the processing
module is configured to manipulate the hardware re-
source via executing the at least one function sub-
tree.

S22. The system according to the preceding embod-
iment, wherein the processing module is configured
to access the hardware resource and/or manipulate
the hardware resource via executing the function
section of a subtree.

S23. The system according to any of the preceding
system embodiments with the features of S21,
wherein the hardware resource is one of a motorized
element configured to move the apparatus relative
to its environment, a motorized element configured
to manipulate an object separate from the apparatus,
and a sensor element configured to capture the en-
vironment of the apparatus.

25 26 



EP 4 040 293 A1

15

5

10

15

20

25

30

35

40

45

50

55

S24. The system according to any of the preceding
system embodiments with the features of S14,
wherein the processing module is configured to ex-
ecute at least one function of locating an object, ma-
nipulating the object, moving the object, gripping the
object, navigating, repositioning, docking at a charg-
ing station, emergency stop via calling the function
section of a subtree.

S25. The system according to any of the preceding
system embodiments with the features of S5, where-
in the behavior tree comprises a recovery plan sec-
tion, wherein the processing module is configured to
receive and/or generate a recovery plan via calling
the recovery plan section.

S26. The system according to the preceding embod-
iment, wherein the recovery plan section is a recov-
ery plan node.

S27. The system according to any of the preceding
system embodiments with the features of S2, where-
in the behavior tree comprises a sequence node and
a selector node, wherein the selector node is a child
node of the sequence node and the method includes
the step of the sequence node calling the selector
node last in the sequence of calling its child nodes.

S28. The system according to the preceding embod-
iment, comprising a plan activation section wherein
the plan activation section is a child section of the
selector node, wherein the processing module is
configured to generate or receive a plan step infor-
mation representing a task or a next step of the cur-
rent task of the apparatus via calling the selector
node.

S29. The system according to the preceding embod-
iment, wherein the plan activation section is config-
ured to call the planner section at each instance the
plan activation section is called, and wherein the ac-
tivation section is configured to compare a step re-
ceived from the planner section to a previously
planned step.

530. The system according any of the preceding sys-
tem embodiments with the features of S28, wherein
the behavior tree comprises a plan completion sec-
tion, wherein the processing module is configured to
check if the last step of the plan is executed and if
the last step of the plan succeeded via calling the
plan completion section, wherein the plan comple-
tion section is disposed as a child node of the selector
node and/or hierarchically parallel to the plan acti-
vation section.

S31. The system according to any of the previous
embodiments with the features of S25, wherein the

behavior tree comprises a loop node, wherein the
recovery plan section is provided as a child node
hierarchically parallel to the loop node, wherein a
subtree representing a current task of the apparatus
is provided as a child node to the loop node.

S32. The system according to any of the previous
embodiments with the features of S25, wherein the
processing module is configured to execute a recov-
ery sequence via calling the recovery plan section.

S33. The system according to any of the previous
embodiments with the features of S25 and S31,
wherein the behavior tree comprises a recovery
node, wherein the loop node and the recovery plan
section are child sections of the recovery node,
wherein the processing module is configured to call
the loop node via calling the recovery node and to
call the recovery plan section via the recovery node,
when the loop node fails.

S34. The system according to any of the preceding
system embodiments with the features of S5, where-
in the behavior tree comprises a parallel node con-
figured to call its child nodes simultaneously.

S35. The system according to any of the preceding
system embodiments with the features of S34,
wherein the parallel node is configured to set its re-
sult to failed when one of its child nodes fails and to
set its result to succeeded when all child nodes suc-
ceed.

S36. The system according to any of the preceding
system embodiments with the features of embodi-
ment S2,
wherein the root node is configured to call its child
nodes with a constant tick frequency, wherein the
inverse of the tick frequency defines a constant tick
interval.

S37. The system according to any of the preceding
system embodiments,
wherein the processing module is configured to ex-
ecute an executor application configured to step
through the behavior tree

S38. The system according to the preceding embod-
iments and with the features of the penultimate em-
bodiment,
wherein the behavior tree comprises a node config-
ured to provide a tick request to the executor appli-
cation,
wherein in response thereto the executor application
is configured to trigger the root node to call its child
node at a time, wherein a time difference of this time
minus the last previous time when the root node
called its child node is smaller than the constant tick

27 28 



EP 4 040 293 A1

16

5

10

15

20

25

30

35

40

45

50

55

interval.

S39. The system according to any of the preceding
system embodiments with the features of embodi-
ment S36, wherein the constant tick frequency is in
the range of 0.1 Hz to 100 Hz, preferably 0.2 Hz to
10 Hz.

S40. The system according to any of the preceding
system embodiments with the features of S38,
wherein the node provides a tick request to the ex-
ecutor application based on a status change of the
node, a status change of one of its child nodes and/or
a status change of a subtree disposed hierarchically
below the node.

S41. The system according to any of the preceding
system embodiments with the features of S38,
wherein the executor application is configured to call
the root node independent of the constant tick inter-
val upon receiving a tick request.

S42. The system according to any of the preceding
embodiment with the features of embodiment S2,
wherein each of a plurality of the nodes comprises
at least one data element indicator indicating at least
one data element related to the respective node.

S43. The system according to the preceding embod-
iment, wherein the at least one data element indica-
tor comprises at least one required input value data
indicator, wherein each required input value data in-
dicator indicates a data element whose value is re-
quired to be passed to the respective node for exe-
cution of the respective node.

S44. The system according to any of the 2 preceding
embodiments, wherein the at least one data element
indicator comprises at least one required input ref-
erence data indicator, wherein each required input
reference data indicator indicates a reference to a
data element, which reference needs to be passed
to the respective node for execution of the respective
node.

S45. The system according to any of the 3 preceding
embodiments, wherein the at least one data element
indicator comprises
at least one constant value data indicator, wherein
each constant value data indicator indicates a data
element whose value is constant at runtime and
whose value is required to be passed to the respec-
tive node for execution of the respective node.

S46. The system according to any of the 4 preceding
embodiments, wherein the at least one data element
indicator comprises
at least one changing value data indicator, wherein

each changing value data indicator
indicates a data element whose value is required to
be updated whenever the respective node is called.

S47. The system according to any of the 5 preceding
embodiments, wherein the at least one data element
indicator comprises
at least one optional input value data indicator,
wherein each optional input value data indicator in-
dicates a data element whose value is not required
to be passed, but is optionally passed, to the respec-
tive node for execution of the respective node.

S48. The system according to any of the 6 preceding
embodiments, wherein the at least one data element
indicator comprises
at least one output data indicator, wherein each out-
put data indicator indicates a data element accessi-
ble by at least one node other than the node com-
prising the respective output data indicator.

S49. The system according to any of the preceding
system embodiments with the features of S21,
wherein the apparatus is configured to move freely
in space.

S50. The system according to any of the preceding
system embodiments, wherein the apparatus is a
robot.

S51. The system according to any of the preceding
system embodiments, wherein the system is config-
ured to perform the method according to any of the
preceding method embodiments.

T1. A software product, configured to perform the
method according to any of the preceding method
embodiments.

T2. The software product according to the preceding
embodiment, wherein the software product is con-
figured to perform the method according to any of
the preceding method embodiments, when run on
an assembly comprising a data processing system
and the apparatus.

Brief description of figures

[0093] The present invention will now be described
with reference to the accompanying drawings, which il-
lustrate embodiments of the invention. These embodi-
ments should only exemplify, but not limit, the present
invention.

Fig. 1 schematically depicts an embodiment of a be-
havior tree according to the present invention;

Fig. 2 schematically depicts an embodiment of a be-

29 30 



EP 4 040 293 A1

17

5

10

15

20

25

30

35

40

45

50

55

havior tree according to the present invention;

Fig. 3 schematically depicts an embodiment of a ap-
paratus according to the present invention;

Detailed description of figures

[0094] Fig. 1 schematically depicts an embodiment of
a behavior tree 100 in accordance with the present in-
vention. The behavior tree 100 comprises a root node
101, which is the initial node to be called to traverse the
behavior tree 100. The root node 101 can call a first se-
quence node 102, which is a child node to the root node
101, the first sequence node 102 being configured to
sequentially call its child nodes 104, 106. The behavior
tree 100 can comprise a planner section 103, more spe-
cifically a planner node 104, which can be the first child
node of the first sequence node 102.
[0095] The planner section 103 can acquire a state of
the apparatus, wherein the state of the apparatus is typ-
ically based on an environment of the apparatus, and/or
on an execution state of the apparatus. For example, the
apparatus may be a robot configured to pick up and trans-
port items. Such an apparatus may have different exe-
cution states. For example, in one operation state, the
apparatus (i.e., the robot) may have a gripper unit inactive
and may simply travel from a location A to a location B.
Further, in another operation state, the robot may already
be at the right location (i.e., travelling may not be neces-
sary), but the robot may be in the process of picking up
an object. As regards the environment of the apparatus,
e.g., the apparatus may recently have detected a moving
object (which may be a human), or may not have detected
such a moving object recently. E.g., depending on the
environment and/or on the operation state of the robot,
a plan of operation of the apparatus may depend, and
thus, a plan may be generated in the planner section 103,
which - in the embodiment depicted in Fig. 1 - is a planner
node 104, but may also be realized differently (e.g., as
a subtree comprising a plurality of nodes).
[0096] Based on the state of the apparatus, the planner
section 103 may set an activation status of subtrees. With
particular reference to, e.g., Fig. 1, the behavior tree com-
prises functional subtrees 114-1 to 114-6. In the depicted
embodiment, each of these subtrees 114-1 to 114-6 com-
prises an activation section 113, respectively. For exam-
ple, subtree 114-1 comprises an activation section 113-1.
In the depicted embodiment, the functional subtree 114-1
relates to the function of the apparatus (e.g., robot) find-
ing an item to be picked up. For example, when the robot
travels from a first location to a second location (where
the item is to be picked up), this functionality may not be
needed (e.g., as the approximate location of the item to
be picked up may be stored in a database). However,
once the robot is in the approximate location where the
item to be picked up is located, it may be desirable to
find the concrete item to be picked up, to localize it and
to then pick it up with a gripper. Thus, in the first state

(robot travelling to approximate location of the item), it
may be advantageous not to actually fully execute the
functional subtree relating to finding the item, while in the
second state (robot intending to pick up the item), it may
be desirable to execute the functional subtree relating to
finding the item.
[0097] More particularly, in embodiments of the
present invention, the planner section 103 may thus set
the activation status of the subtree by setting the activa-
tion section 113. When the activation section 113 is ac-
tivated, the subtree may be executed. When the activa-
tion section 113 is de-activated, the subtree may not be
executed. More particularly, the subtree 114-1 comprises
a sequence node 115-1 and the activation section 113
may be the highest-ranking child of this sequence node
115-1. The subtree 114-1 further comprises an additional
function section 116-1 as a further child of the sequence
node 115-1, wherein this function section 116-1 is lower
ranking than the activation section 113. Thus, when set-
ting the activation section 113-1 to active (i.e., "success"),
the behavior tree will traverse the subtree 114-1, section
113-1 will return "success" and the further functional sec-
tion 116-1 will thus be traversed (i.e., the respective func-
tionality will be executed). However, when setting the ac-
tivation section 113-1 to inactive (i.e., "failure"), the sub-
tree 114-1 stops execution after calling the activation sec-
tion 113-1, i.e., the other child (or children) of the se-
quence node 115-1 are not called. Thus, the execution
of the subtrees may be controlled by means of such an
activation section.
[0098] Again, the planner section 103 may determine
a state of the apparatus, and may in response thereto
set the activation states of subtrees, e.g., by setting the
status of a relatively high-ranking activation section 113-
n in the respective subtrees. Thus, subtrees may be ac-
tivated or de-activated.
[0099] This may increase the operational efficiency, as
only those functional subtrees may be executed in their
entirety which are needed based on the current opera-
tional state of the apparatus.
[0100] Furthermore, a recovery node 106 can be dis-
posed parallel to the planner section 103. The first se-
quence node 102 can be configured to call the recovery
node 106 after calling the planner section 103, respec-
tively the planner node 104. In particular, the recovery
node 106 can be called once the planner section 103
succeeded.
[0101] The recovery node 106 can have at least two
child nodes linked to it. The recovery node 106 can be a
sequence node configured to call its child nodes in a pre-
defined sequence. Specifically, the recovery node 106
can have a loop node 105 linked to it as a first child node
and a recovery plan section 107 linked to it as a second
child node. The recovery plan section 107 can be a sub-
tree or a single node configured to modify a subtree dis-
posed hierarchically downstream of the loop node 105.
Thereby, the recovery plan section 107 can alter the be-
havior tree 100 to mitigate a failure of the loop node 105.

31 32 



EP 4 040 293 A1

18

5

10

15

20

25

30

35

40

45

50

55

The loop node 105 may fail, for example, when the main
task constituted by a plurality of function subtrees fails
due to an irrecoverable error in the currently running func-
tion subtrees attached either directly to the loop node
105 or attached via proxy nodes downstream of the loop
node 105. The alteration to the behavior tree 100 may
still require the original main task to succeed, however,
the function subtrees or their relative configuration to one
another can be changed in such a way that the order or
type of actions to be executed is modified.
[0102] The recovery node 106 can be configured to
call the loop node 105 first. The loop node 105 can be
configured to execute its at least one child node in a loop
as long as it succeeds. The number of iterations can be
limited. The loop node 105 can be configured to fail if the
at least one child node fails once. In the case of a limited
number of iterations, the loop node 105 is configured to
succeed when the child node has succeeded in every
iteration.
[0103] The behavior tree 100 can comprise a further
sequence node 108 which is linked to the loop node as
a child node. The further sequence node 108 can be con-
figured to call its child nodes in a predetermined se-
quence, in particular calling from top to bottom according
to the orientation of the schematic.
[0104] Furthermore, the behavior tree 100 can com-
prise a selector node 109, which is linked to the further
sequence node 108 as a child node. The further se-
quence node 108 can be configured to call the selector
node 109 last.
[0105] Additionally, the behavior tree 100 can com-
prise a plan activation section 110 and/or a plan comple-
tion section 111 which can be linked to the selector node
109 as child nodes. The plan activation section 110 can
be configured to acquire a new step to be executed of a
plan describing a task the apparatus is tasked with.
[0106] The plan completion node 111 can be config-
ured to succeed when the task to be completed by the
current traversing through the behavior tree 100 is com-
pleted and/or no further plan steps are to be executed.
The selector node 109 in turn succeeds and thereby sig-
nal the loop node 105 by proxy of the further sequence
node 108 that the task is complete. A task can complete
by either succeeding or failing. A failed task may trigger
a call of the recovery plan section 107.
[0107] According to an embodiment of the invention,
the behavior tree 100 comprises at least one parallel
node 117. The parallel node 117 can be disposed parallel
to the selector node 109 and called before the selector
node 109 is called or disposed hierarchically below a
further node parallel to selector node 109. The parallel
node 117 can be configured to call its child nodes in such
a way that the child nodes execute their associated task
simultaneously to each other. When the parallel node
calls its child nodes, at least two child nodes of the parallel
node 117 may be in the state RUNNING.
[0108] The behavior tree 100 can comprise at least a
further selector node 112. Specifically, the behavior tree

100 can comprise a further selector node 112-1, to which
function subtrees pertaining to a specific first apparatus
resource are connected. Therefore, this further selector
node 112-1 is also called a first resource node 112-1.
Furthermore, the behavior tree 100 can comprise a fur-
ther selector node 112-2, to which function subtrees per-
taining to a specific second apparatus resource are con-
nected. This further selector node 112-2 can also be
called a second resource node 112-2. The resource
nodes 112-1, 112-2, can be realized as selector nodes.
The selector nodes 112-1, 112-2 may always start with
calling their respective designated first child node. If a
ticked child node returns RUNNING, the respective par-
ent resource node 112-1, 112-2 can also return RUN-
NING. If one child node returns SUCCESS, the respec-
tive resource node 112-1, 112-2 succeeds as well and
does not execute any further child nodes. If all child nodes
return FAILURE, the resource node 112-1, 112-2 can
also return FAILURE. The selector composite may usu-
ally be used to rank tasks, respectively functions by their
priority, with the first child node having the highest priority.
Each child node may check its applicability conditions,
such that higher-priority child nodes will automatically be-
come active at the next iteration and may override or
cancel the execution of lower priority child nodes. Gen-
erally, it will be understood that the selector node 112-1
will execute the first of its child nodes that does not fail.
Thus, by using the described architecture and the acti-
vation sections 113, all the subtrees that are de-activated
will fail immediately after being called, so that when ex-
ecuting the behavior tree, the activated subtrees can im-
mediately be executed.
[0109] That is, the behavior tree 100 can comprise a
plurality of function subtrees 114-1 - 114-6 with respec-
tive function tree control flow nodes 115-1 - 115-6, where-
in these function tree control flow nodes 115-1 - 115-6
are the first nodes to be called, when the respective func-
tion subtree 114-1 - 114-6 is executed. Each function
subtree can comprise a respective function section 116-1
- 116-6. A function section can comprise instructions to
manipulate the respective hardware resource to achieve
the task associated with the function subtree. These in-
structions can be executed when the function section
116-1 - 116-6 is called. Further, a function subtree 114
can comprise an activation section 113, as discussed.
[0110] As discussed, in embodiment of the present in-
vention, a status of activation sections 113 pertaining to
the function subtrees 114 available via the resource
nodes 112 may be set by means of the planner section
103.
[0111] The first resource node 112-1 and the second
resource node 112-2 can be connected as child nodes
to the parallel node 117. The first resource node 112-1
can be the first node of a subtree, which groups all func-
tions pertaining to a first apparatus resource. The first
apparatus resource can be a motorized control arm of
the apparatus. Thus, all functions which access the first
apparatus resource may be represented as function sec-

33 34 



EP 4 040 293 A1

19

5

10

15

20

25

30

35

40

45

50

55

tions of the subtree attached to the first resource node
112-1. A function subtree 114 can comprise a function
tree control flow node 115 with an activation section 113
as a first child node and a function section 116 as a sec-
ond child node.
[0112] According to an embodiment of the invention,
function sections 116-1 - 116-3 regarding the first re-
source, i.e., a motorized control arm, can pertain to the
task of finding an object, respectively item to pick up, the
task of picking up the object and the task of placing the
object in a backpack, wherein the backpack can be a
storage space of the apparatus. Furthermore, a null func-
tion node 118-1 can be linked to the first resource node
112-1, wherein the null function node 118-1 is called last,
i.e., when none of the previous functions subtrees 114-1
- 114-3 succeeded or none of the previous function sub-
trees 114-1 - 114-3 need to be executed.
[0113] According to an embodiment of the invention,
function sections 116-4 -116-6 regarding the second re-
source, i.e., a motorized translation base, can pertain to
the task of navigating, the task of repositioning and/or
the task of docking to charge. Furthermore, a further null
function node 118-2 can be linked to the second resource
node 112-2, wherein the further null function node 118-1
is called last, i.e., when none of the previous function
subtrees 114-4 - 114-6 succeeded or none of the previ-
ous function subtrees 114-4 - 114-6 need to be executed.
[0114] Fig. 2 depicts further embodiments of the
present invention. The behavior tree 100 comprises a
root node 101, which is the initial node to be called to
traverse the behavior tree 100. The behavior tree 100
can further comprise a first control flow node, in particular
a first sequence node 102, wherein the root node 101 is
configured to call the first sequence node 102, which is
a child node to the root node 101.
[0115] The behavior tree 100 can comprise a further
control flow node, in particular a first selector node 203,
which can be configured to have a plurality of child nodes
206, 207, 208 attached to it. The behavior tree 100 can
comprise a first conditional node 206 and a second con-
ditional node 207, which are children of the first selector
node 203. The conditional nodes 206, 207 can be con-
figured to evaluate a condition when called. For example,
the first conditional node 206 can be configured to deter-
mine whether an item is in a gripper. The gripper can be
a physical resource of an apparatus, specifically a robot,
configured to grip items. Furthermore, the second con-
ditional node 207 can be configured to determine whether
an item is in its target, in particular its target location. The
item can be a physical object separate from the appara-
tus, specifically an item to be located and/or picked up.
Thus, when the first selector node 203 is called at least
one condition can be evaluated prior to calling a further
sequence node 208 (which is a further child node of the
first selector node 203) to execute a function.
[0116] The behavior tree 100 can comprise a further
sequence node 208, wherein two function subtrees are
attached to the further sequence node 208 via further

selector nodes 209-1 and 209-2. The further sequence
node 208 can be configured to sequentially call its child
nodes, beginning with a first function selector node 209-1
and continuing with a second function selector node
209-2. Thereby, a first function subtree can be executed
and after completing the first function subtree, a further
function subtree can be executed by calling the second
function selector node 209-2.
[0117] The first function selector node 209-1 can be
the first node of a function subtree pertaining to the nav-
igation of the apparatus, in particular the navigation of a
robot in a known environment, i.e., a warehouse. A first
child node 210 of the first function selector node 209-1
can be configured to determine whether the apparatus
should initiate a navigation. The navigation can be exe-
cuted by calling the second child node 211 of the first
function selector node 209-1. The node 211 can be a
sequence node. A function subtree attached to the node
211 can be configured to estimate the position of an item
to be picked up as a first step and to navigate to the
estimated position of the item to be picked up as a second
step.
[0118] The navigation can be retried for a number of
iterations. Chronical data can be logged for the first step
and the second step, in particular logged individually by
dedicated logging nodes 212-1 and 212-2.
[0119] The second function selector node 209-2 can
be the first node of a function subtree pertaining to the
function of picking up an item, more generally of a func-
tion pertaining to a separate resource of the apparatus,
in particular separate from navigational resources.
[0120] A first child node 213 of the second function
selector node 209-2 can be configured to determine
whether an item is gripped, respectively an item is posi-
tioned in the gripper. The gripper can be a general item
handling resource of the apparatus. The gripping of an
item can be executed by calling the second child node
214 of the second function selector node 209-2. The node
214 can be a sequence node. A function subtree attached
to the node 214 can be configured to find the item to be
picked up as a first step and to pick the item up using the
gripper as a second step. The step of picking up the item
can further be split by a sequence node 215, wherein in
a first child node 216 of the sequence node can be con-
figured to determine whether the apparatus is able to pick
up the item by checking if there is space for the item to
be placed in a backpack of the apparatus. The backpack
can be a storage space attached to the apparatus. The
node 216 can be an execution node configured to deter-
mine if the item to be pick-up or already picked-up can
fit in the backpack. This may include calculating the re-
maining volume of the backpack, calculating the volume
of the item, comparing at least one dimension of the item
with at least one dimension of the backpack and/or con-
sidering the dimensions of items already in the backpack.
A second child node 2017 of the sequence node 215 can
be a further execution node configured to execute the
task of picking up the item from its estimated position,

35 36 



EP 4 040 293 A1

20

5

10

15

20

25

30

35

40

45

50

55

i.e., the position of the item on a storage shelf.
[0121] Chronical data can be logged for the first step
and the second step, in particular logged individually by
dedicated logging nodes 218-1 and 218-2.
[0122] Once the function subtrees are completed,
meaning they either failed or succeeded and reported
that status to the parent node, specifically the further se-
quence node 208, then to the first selector node 203
and/or then to the first sequence node 102, the first se-
quence node 102 can continue by calling its next child
node according to its predetermined sequence.
[0123] Specifically, the behavior tree 100 can comprise
a further control flow node, in particular a second selector
node 204, which is the second child node of the first se-
quence node 102 to be called after the first selector node
203. The second selector node 204 can be a first node
of a subtree pertaining to completing the current task, i.e.
carrying out the last action required to complete the cur-
rent task and/or initiating the start of the next task, re-
spectively job. A task or job can be defined as an overall
goal to be achieved by the apparatus, wherein a specific
sequence of actions, in particular actions codified by the
behavior tree and performed by the apparatus can com-
plete the task.
[0124] The second selector node 204 can have a fur-
ther conditional node 219 and a parallel node 220 at-
tached sequentially as child nodes. The further condi-
tional node 219 can be configured to evaluate a condition
when called. For example, the further conditional node
219 can be configured to determine whether an item is
at its target location. The target location can be the back-
pack of the apparatus or any other destination for the
item, i.e., a conveyor belt, another shelf place, a back-
pack of another robot.
[0125] Furthermore, the parallel node 220 can be con-
figured to run two tasks, meaning two function subtrees
or nodes in parallel. A first execution node 221 can be
linked to the parallel node 220, in particular via a further
logging node 223 configured to log chronical data per-
taining to the execution of the task assigned to the exe-
cution node 221. The first execution node 221 can be
configured to execute the task of placing the item in the
backpack.
[0126] A further execution node 222 can be linked to
the parallel node 220, wherein the parallel node 220 is
configured to at least partially execute the first execution
node 221 and the second execution node 222 in parallel.
A partially parallel execution can be defined as the exe-
cution nodes 221, 222 being in the state RUNNING for
a time interval. More specifically, the parallel node 220
is configured to call the first execution node 221 via proxy
of the further logging node 223 and to call the second
execution node 222 via proxy of an Ignore-Failure-node
224. The Ignore-Failure-node 224 can be configured to
return SUCCESS when its child node, respectively the
second execution node 222, returns SUCCESS or FAIL-
URE, and return RUNNING when its child node returns
RUNNING.

[0127] The behavior tree 100 can further comprise a
failure node 205 which is a child node of the first sequence
node 102. The first sequence node 102 can be configured
to call the failure node 205 last in a sequence of nodes
203, 204, 205 called by the first sequence node 102.
[0128] The failure node 205 can have two child nodes
225, 226. The node 225 can be configured to execute
the task dedicated to complete the assigned plan. Pref-
erably, the node 225 is configured to generate an indi-
cator signal to provide information regarding the comple-
tion of the currently assigned job, respectively task by
the apparatus. The node 225 can be configured to gen-
erate a marking in a database as the indicator signal,
wherein the database can be accessible by further ap-
paratuses so as to indicate that the job is complete to
these further apparatuses. The indicator signal can com-
prise a time information indicating the time of completion
of the job. The marking in the database can be achieved
by modifying a database element, generating a new da-
tabase element and/or setting a value of a database el-
ement.
[0129] The node 226 can be configured to create an
event signaling the failure of the currently traversed be-
havior tree. In particular, the node 226 can be called as
a last option, more specifically as the last node being
called before the current task will fail completely and the
first sequence node 102 would return FAILURE.
[0130] The node 226 can be configured to generate a
failure message or a failure event which can be evaluated
by the apparatus, in particular be evaluated by systems
outside the currently traversed behavior tree 100.
[0131] Fig. 3 schematically depicts an embodiment of
an apparatus 300 in accordance with the present inven-
tion. The apparatus 300 can be a robot. The robot 300
can comprise a motorized base unit 301. The motorized
base unit 301 can be configured to execute a translational
movement of the robot 300 with respect to its environ-
ment. Specifically, the motorized base unit 301 can move
the robot 300 on a floor. The motorized base unit 301
may comprise a plurality wheels, rollers, cart wheels,
chain tracks and/or omnidirectional wheels. The sche-
matic drawing only depicts two wheels 302-1, 302-2,
while it should be understood that the embodiment de-
picted in Fig. 3 would usually comprise 4 wheels (al-
though other configurations are also possible).
[0132] On the motorized base unit 301, a pick-up
means 303 is located. In the depicted embodiment, the
pick-up means 303 is a grappler having one or more joints
304-1,304-2, 304-3. At the end of pick-up means 303,
there is provided a gripping tool 305 adapted to grip or
pick-up objects.
[0133] Furthermore, at the end of the pick-up means
303, there is also provided a camera 308. On top of the
base 301, there may be a space 306 to place objects,
e.g., objects 307-1 to 307-3.
[0134] The robot 300 may be an autonomously driven
and executed robot 300. The robot 300 may in particular
be used in a warehouse to pick up goods, e.g., objects

37 38 



EP 4 040 293 A1

21

5

10

15

20

25

30

35

40

45

50

55

307-1 to 307-2 and to bring the objects 307-1 to 307-3
to a desired location. The robot 300 may be configured
to execute a task structured by a behavior tree. For ex-
ample, the robot 300 may locate an object 307-1-307-3,
navigate to the object 307-1-307-3, position its pick-up
means 303, respectively its gripper 305 relative to the
object 307-1-307-3, grip the object 307-1-307-3, place
the object 307-1-307-3 in the space 306, navigate to a
destination, continue to pick-up further objects and/or
navigate to a charging station. Each of the above actions
may be carried out in any order and repeated as desired.
Moreover, the objects 307-1 - 307-3 may be placed on
shelves 309-1 - 309-4.
[0135] Again, with primary reference to Fig. 1 (although
it will be understood that the concepts described below
may also be used in conjunction with the embodiment
depicted in Fig. 2), the root node 101 typically calls its
child node 102 with a tick frequency, and the behavior
tree 100 is then traversed with this constant tick frequen-
cy. For example, the constant tick frequency may be in
the range of 0.1 Hz to 100 Hz, and more particularly it
may be 1 Hz. That is, the behavior tree 100 is traversed
once per second.
[0136] Such a constant tick frequency of 1 Hz may be
relatively low compared to behavior trees that have pre-
viously been described in conjunction with operation a
technical apparatus, such as a robot 300. Furthermore,
it is noted that different functionalities of the apparatus
may ideally be executed with different frequencies. For
example, when the robot intends to dock to a charger
(see 116-6), it may not be critical that this is performed
very quickly. However, for example, an emergency brake
functionality employed when a human is sensed in the
vicinity of a moving robot (this functionality is not depicted
in Fig. 1) may advantageously be operated faster, and
ideally faster than the time scale corresponding to the
constant tick frequency, which time scale would be 1 s
in case of a tick frequency of 1 Hz.
[0137] Furthermore, it will be understood that the be-
havior tree 100 may typically be executed by an executor
application.
[0138] Thus, in embodiments of the present technolo-
gy, it may also be possible that a node of the behavior
tree provides a tick request to the executor application
and the executor application causes the root node to call
its child node "immediately" afterwards.
[0139] For example, consider that in the normal oper-
ation (with a tick frequency of 1 Hz), the root node ticks
its child node at times of 0.00 s, 1.00 s, 2.00 s, 3.00 s, etc.
[0140] It may then be possible that, e.g., at time 2.23
s, a node senses a human in the vicinity of the robot
which is moving. In response thereto, the node may send
a tick request to the executor application, e.g., at time
2.29 s, and the executor application may cause the root
node to tick its child node, such that this ticking occurs
at time 2.31 s. Thus, the behavior tree 100 will be tra-
versed again 0.31 s after it has last been traversed.
[0141] Thus, the present technology may allow to be

very responsive, i.e., reacting fast to changing conditions.
At the same time, under normal operation conditions, the
behavior tree may operate at a relatively low frequency,
thereby saving energy.
[0142] This may be advantageous vis-à-vis approach-
es where the behavior tree is only traversed with a con-
stant frequency. In such scenarios, the operation of the
behavior tree is either not responsive (leading to below
optimal performance), or the frequency is relatively high.
In particular, in such approaches, the frequency would
normally be set in view of the functionality requiring the
highest frequency. However, even in situations when
such a high frequency functionality is not executed, the
behavior tree would normally be executed with the high
frequency, leading to an overly high energy expenditure.
This can be overcome by the described embodiment.
[0143] Furthermore, and also with primary reference
to Fig. 1 (although it is again noted that the concept now
described may also be used in conjunction with the em-
bodiment depicted in Fig. 2), it will generally be under-
stood that the behavior tree 100 depicts the control flow.
However, this is relatively independent from the "data
flow", i.e., from the assessment of which sections of the
behavior tree have access to which data elements.
[0144] Thus, in embodiments of the present technolo-
gy, each node comprises a data element indicator. The
data element indicator indicates at least one data ele-
ment that is related to the respective node.
[0145] The data element indicators may be realized as
follows.
[0146] The data element indicators may comprise re-
quired input data indicators. Such a required input data
indicator indicates a data element whose value is re-
quired to be passed to the respective node for execution
of the respective node. For example, consider the node
116-4 in Fig. 1 relating to navigation of the robot. Such
a node may require as a data element the location of the
target of the navigation, such that this data element (tar-
get in space) would be a required data input element,
which would be indicated by a required input data indi-
cator.
[0147] The data element indicators may comprise re-
quired input reference data indicator. The required input
reference data indicators may indicate references to data
elements, which references needs to be passed to the
respective node for execution of the respective node.
This may generally be similar to the required input data
indicators. However, instead of requiring the actual data
element to be passed to the node for its execution, a
reference may be passed. In particular, this may be used,
e.g., in case the corresponding data element has a rel-
atively large size and it would thus require a long time to
pass the actual data to the respective node. For example,
reference is again made to the navigation node 116-4 in
Fig. 1. When a robot is operating in a warehouse and
wishes to navigate to a target location, it may require
access to a map representative of the warehouse. How-
ever, such a map may have a relatively large size as

39 40 



EP 4 040 293 A1

22

5

10

15

20

25

30

35

40

45

50

55

regards its data. Thus, the respective node 116-4 may
have a data indicator being a required input reference
indicator, i.e., the data indicator may indicate that a ref-
erence to a respective map of the warehouse is required
for operation of the respective node.
[0148] The data element indicators may comprise con-
stant value data indicators. The constant value data in-
dicator may indicate a data element whose value is con-
stant at runtime and whose value is required to be passed
to the respective node for execution of the respective
node. Again, with respect to the navigation node 116-4,
an example for a constant value data indicator may be
an indication of a warehouse. Consider, e.g., an imple-
mentation where a robot may be operated in different
warehouses, e.g., in warehouses A, B, C, D, E, F, G, and
H. However, in one operation cycle, the robot would typ-
ically only be operated in one warehouse. Thus, the nav-
igation node 116-4 may require as an input a constant
value for the warehouse, and this may be indicated by a
constant value data indicator.
[0149] The data element indicators may comprise
changing value data indicators, wherein each changing
value data indicator indicates a data element whose val-
ue is required to be updated whenever the respective
node is called. Again, exemplary reference is made of
the navigation node 116-4. An example for a changing
value data indicator may be the position of the robot. It
will be understood that for the navigation of the robot, it
is usually required to have access to the position of the
robot and that this position will constantly change when
the robot is moving. Thus, the current position of the robot
may be indicated by a changing value data indicator. In
this regard, it is noted that such changing value data in-
dicators are changed whenever the respective node is
called (and not only when the respective node changes
its status). Furthermore, it is also noted that a changing
value data indicator may refer both to input and to output
values. With further reference to the described example,
the current position of the robot may not only be used for
the navigation node 116-4, but also by other nodes, e.g.,
by the node 116-5 relating to a repositioning of the robot,
and that for all such nodes, it may be advantageous to
have access to data element that is regularly updated
(and not only when a respective node has succeeded).
[0150] The data element indicators may comprise op-
tional input value data indicators, wherein each optional
input value data indicator indicates a data element whose
value is not required to be passed, but can be passed,
to the respective node for execution of the respective
node. Again, with reference to the navigate node 116-4,
consider the situation of a robot operating in a warehouse
where also other robots may be present. An optional input
value may be the location of other robots in the ware-
house. If such data is provided to the navigation node
116-4, it may take these locations of the other robots into
account when calculating the path from the robot’s cur-
rent location to its target location. However, when no in-
formation is provided in this regard, the node 116-4 may

operate in a default state by disregarding other robots
and by simply calculating the fastest route without taking
into consideration potential delays by conflicting routes
of robots. Thus, such an information may be indicated
by an optional input value data indicator. It will be under-
stood that for such data, the node will typically such data
into account (when such data is provided), however, the
node can also be operated without being provided with
such data.
[0151] The data element indicators may comprise out-
put data indicator, wherein each output data indicator
indicates a data element accessible by at least one node
other than the node comprising the respective output da-
ta indicator. Again, with reference to navigation node
116-4, the navigation node 116-4 may, e.g., track a dis-
tance travelled by the robot due to the navigation of the
robot. Such a data point may be output and used by other
nodes, e.g., by nodes estimating the remaining operation
energy before the robot has to be charged again.
[0152] Reference numbers and letters appearing be-
tween parentheses in the claims, identifying features de-
scribed in the embodiments and illustrated in the accom-
panying drawings, are provided as an aid to the reader
as an exemplification of the matter claimed. The inclusion
of such reference numbers and letters is not to be inter-
preted as placing any limitations on the scope of the
claims.
[0153] The term "at least one of a first option and a
second option" is intended to mean the first option or the
second option or the first option and the second option.
[0154] Whenever a relative term, such as "about",
"substantially" or "approximately" is used in this specifi-
cation, such a term should also be construed to also in-
clude the exact term. That is, e.g., "substantially straight"
should be construed to also include "(exactly) straight".
[0155] Whenever steps were recited in the above or
also in the appended claims, it should be noted that the
order in which the steps are recited in this text may be
accidental. That is, unless otherwise specified or unless
clear to the skilled person, the order in which steps are
recited may be accidental. That is, when the present doc-
ument states, e.g., that a method comprises steps (A)
and (B), this does not necessarily mean that step (A)
precedes step (B), but it is also possible that step (A) is
performed (at least partly) simultaneously with step (B)
or that step (B) precedes step (A). Furthermore, when a
step (X) is said to precede another step (Z), this does not
imply that there is no step between steps (X) and (Z).
That is, step (X) preceding step (Z) encompasses the
situation that step (X) is performed directly before step
(Z), but also the situation that (X) is performed before
one or more steps (Yl), ..., followed by step (Z). Corre-
sponding considerations apply when terms like "after" or
"before" are used.

41 42 



EP 4 040 293 A1

23

5

10

15

20

25

30

35

40

45

50

55

Claims

1. A method for controlling an apparatus, wherein the
apparatus is a robot, wherein the method includes a
step of using a behavior tree for tasks performed by
the apparatus,

wherein the behavior tree comprises nodes in-
cluding a root node, at least one control flow
node and at least one execution node and di-
rected edges, wherein the nodes are connected
with the directed edges,
wherein the root node has one outgoing edge
and no incoming edge, each control flow node
has one incoming edge and at least one outgo-
ing edge and each execution node has one in-
coming edge and no outgoing edge, wherein a
node having an outgoing edge is defined as a
parent node in relation to another node connect-
ed to this edge and a node having an incoming
edge is defined as a child node in relation to
another node connected to this edge,
wherein the control flow nodes and the execu-
tion nodes are adapted to return different states
to their parents nodes, the states including suc-
cess, running and failure, the method including
the steps of
the root node calling its child node, which is a
control flow node;
the root node’s child node calling a first node;
the first node returning a first state to the root
node’s child node;
the root node’s child node returning a second
state to the root node,,
wherein the behavior tree comprises a planner
section,

and wherein the method comprises calling the plan-
ner section, wherein in response to being called, the
planner section determines a state of the apparatus
and sets an activation status of at least one activation
section.

2. The method according to claim 1, the method includ-
ing the step of the activation section evaluating the
activation status before executing the assigned task.

3. The method according to any of the preceding
claims, wherein the behavior tree comprises a plu-
rality of subtrees, each subtree comprising at least
one control flow node and at least one execution
node,
wherein the plurality of subtrees comprises at least
one function subtree, wherein each function subtree
comprises

a function tree control flow node,
an activation section comprising at least one

node being a child node of the function tree con-
trol flow node, and
a function section comprising at least one node
being a child node of the function tree control
flow node,

wherein the at least one function subtree is a plurality
of function subtrees, wherein the at least one acti-
vation section for which an activation status is set by
the planner section is a plurality of activation sections
of the plurality of subtrees, and preferably all activa-
tion sections of the plurality of subtrees.

4. The method according to the preceding claim,
wherein the apparatus comprises a hardware re-
source, the method including the step of the at least
one function subtree manipulating the hardware re-
source when executed, and the method including
the step of the function section of a subtree access-
ing the hardware resource and/or manipulating the
hardware resource.

5. The method according to any of the preceding
claims, wherein the behavior tree comprises a re-
covery plan section, the method including the step
of the recovery plan section receiving and/or gener-
ating a recovery plan when called.

6. The method according to any of the preceding
claims, wherein the behavior tree comprises a se-
quence node and a selector node, wherein the se-
lector node is a child node of the sequence node and
the method includes the step of the sequence node
calling the selector node last in the sequence of call-
ing its child nodes, wherein the behavior tree com-
prises a plan activation section wherein the plan ac-
tivation section is a child section of the selector node,
the method including the step of the selector node
generating or receiving a plan step information rep-
resenting a task or a next step of the current task of
the apparatus.

7. The method according to any of the previous claim
with the features of claim 5, the behavior tree com-
prising a loop node, wherein the recovery plan sec-
tion is provided as a child node hierarchically parallel
to the loop node, wherein a subtree representing a
current task of the apparatus is provided as a child
node to the loop node,
the method including the step of the recovery plan
section executing a recovery sequence,
the behavior tree comprising a recovery node,
wherein the loop node and the recovery plan section
are child sections of the recovery node, the method
including the step of the recovery node calling the
loop node and the recovery node calling the recovery
plan section, when the loop node fails.

43 44 



EP 4 040 293 A1

24

5

10

15

20

25

30

35

40

45

50

55

8. The method according to any of the preceding
claims, wherein the root node calling its child node
comprises
the root node calling its child node with a constant
tick frequency, wherein the inverse of the tick fre-
quency defines a constant tick interval,
wherein the step of using a behavior tree comprises
an executor application executing the behavior tree,
wherein the method comprises

a node providing a tick request to the executor
application,
in response thereto, the executor application
causing the root node to call its child node at a
time, wherein a time difference of this time minus
the last previous time when the root node called
its child node is smaller than the constant tick
interval.

9. The method according to the preceding claim,
wherein the constant tick frequency is in the range
of 0.1 Hz to 100 Hz, preferably 0.2 Hz to 10 Hz.

10. The method according to any of the 2 preceding
claims, wherein the node provides a tick request to
the executor application based on a status change
of the node, a status change of one of its child nodes
and/or a status change of a subtree disposed hier-
archically below the node.

11. The method according to any of the preceding
claims, wherein each of a plurality of the nodes com-
prises at least one data element indicator indicating
at least one data element related to the respective
node.

12. The method according the preceding claim, wherein
the at least one data element indicator comprises at
least one changing value data indicator, wherein
each changing value data indicator indicates a data
element whose value is required to be updated
whenever the respective node is called.

13. The method according to any of the 2 preceding
claims, wherein the at least one data element indi-
cator comprises at least one output data indicator,
wherein each output data indicator indicates a data
element accessible by at least one node other than
the node comprising the respective output data in-
dicator.

14. A system for controlling an apparatus, wherein the
system comprises a processing module configured
to use a behavior tree for tasks performed by the
apparatus, wherein the system is configured to per-
form the method according to any of the preceding
claims.

15. A software product, configured to perform the meth-
od according to any of the claims 1 to 13.

Amended claims in accordance with Rule 137(2)
EPC.

1. A method for controlling an apparatus (300), wherein
the apparatus (300) is a robot, wherein the method
includes a step of using a behavior tree (100) for
tasks performed by the apparatus (300),

wherein the behavior tree (100) comprises
nodes including a root node (101), at least one
control flow node (102) and at least one execu-
tion node (221, 222) and directed edges, where-
in the nodes are connected with the directed
edges,
wherein the root node (101) has one outgoing
edge and no incoming edge, each control flow
node has one incoming edge and at least one
outgoing edge and each execution node has one
incoming edge and no outgoing edge, wherein
a node having an outgoing edge is defined as a
parent node in relation to another node connect-
ed to this edge and a node having an incoming
edge is defined as a child node in relation to
another node connected to this edge,
wherein the control flow nodes and the execu-
tion nodes are adapted to return different states
to their parents nodes, the states including suc-
cess, running and failure, the method including
the steps of
the root node (101) calling its child node, which
is a control flow node (102);
the root node’s child node calling a first node;
the first node returning a first state to the root
node’s child node;
the root node’s child node returning a second
state to the root node, wherein the behavior tree
(100) comprises a planner section (103),

and wherein the method comprises calling the plan-
ner section (103), wherein in response to being
called, the planner section (103) determines a state
of the apparatus (300) and sets an activation status
of at least one activation section (113-n) of the be-
havior tree.

2. The method according to claim 1, the method includ-
ing the step of the activation section (113-n) evalu-
ating the activation status before executing the as-
signed task.

3. The method according to any of the preceding
claims, wherein the behavior tree (100) comprises a
plurality of subtrees, each subtree comprising at
least one control flow node (115-n) and at least one

45 46 



EP 4 040 293 A1

25

5

10

15

20

25

30

35

40

45

50

55

execution node,

wherein the plurality of subtrees comprises at
least one function subtree (114-n),
wherein each function subtree comprises

a function tree control flow node (115-n),
an activation section (113-n) comprising at
least one node being a child node of the
function tree control flow node (115-n), and
a function section (116-n) comprising at
least one node being a child node of the
function tree control flow node (115-n),

wherein the at least one function subtree is a
plurality of function subtrees, wherein the at
least one activation section (113-n) for which an
activation status is set by the planner section
(113) is a plurality of activation sections of the
plurality of subtrees, and preferably all activation
sections of the plurality of subtrees.

4. The method according to the preceding claim,
wherein the apparatus (300) comprises a hardware
resource, the method including the step of the at least
one function subtree manipulating the hardware re-
source when executed, and the method including
the step of the function section of a subtree access-
ing the hardware resource and/or manipulating the
hardware resource.

5. The method according to any of the preceding
claims, wherein the behavior tree (100) comprises a
recovery plan section (107), the method including
the step of the recovery plan section (107) receiving
and/or generating a recovery plan when called.

6. The method according to any of the preceding
claims, wherein the behavior tree (100) comprises a
sequence node (108) and a selector node (109),
wherein the selector node (109) is a child node of
the sequence node (108) and the method includes
the step of the sequence node (108) calling the se-
lector node (109) last in the sequence of calling its
child nodes, wherein the behavior tree (100) com-
prises a plan activation section (110) wherein the
plan activation section (110) is a child section of the
selector node (109), the method including the step
of the selector node (109) generating or receiving a
plan step information representing a task or a next
step of the current task of the apparatus (300).

7. The method according to any of the previous claim
with the features of claim 5, the behavior tree (100)
comprising a loop node (105), wherein the recovery
plan section (107) is provided as a child node hier-
archically parallel to the loop node (105), wherein a
subtree representing a current task of the apparatus

(300) is provided as a child node to the loop node
(105),

the method including the step of the recovery
plan section (107) executing a recovery se-
quence,
the behavior tree (100) comprising a recovery
node (106), wherein the loop node (108) and the
recovery plan section (107) are child sections of
the recovery node (106), the method including
the step of the recovery node (106) calling the
loop node (105) and the recovery node (106)
calling the recovery plan section (107), when the
loop node (105) fails.

8. The method according to any of the preceding
claims, wherein the root node (101) calling its child
node comprises

the root node (101) calling its child node with a
constant tick frequency, wherein the inverse of
the tick frequency defines a constant tick inter-
val,
wherein the step of using a behavior tree (100)
comprises an executor application executing the
behavior tree (100),
wherein the method comprises

a node providing a tick request to the exec-
utor application,
in response thereto, the executor applica-
tion causing the root node (101) to call its
child node at a time, wherein a time differ-
ence of this time minus the last previous
time when the root node (101) called its child
node is smaller than the constant tick inter-
val.

9. The method according to the preceding claim,
wherein the constant tick frequency is in the range
of 0.1 Hz to 100 Hz, preferably 0.2 Hz to 10 Hz.

10. The method according to any of the 2 preceding
claims, wherein the node provides a tick request to
the executor application based on a status change
of the node, a status change of one of its child nodes
and/or a status change of a subtree disposed hier-
archically below the node.

11. The method according to any of the preceding
claims, wherein each of a plurality of the nodes com-
prises at least one data element indicator indicating
at least one data element related to the respective
node.

12. The method according the preceding claim, wherein
the at least one data element indicator comprises at
least one changing value data indicator, wherein

47 48 



EP 4 040 293 A1

26

5

10

15

20

25

30

35

40

45

50

55

each changing value data indicator indicates a data
element whose value is required to be updated
whenever the respective node is called.

13. The method according to any of the 2 preceding
claims, wherein the at least one data element indi-
cator comprises at least one output data indicator,
wherein each output data indicator indicates a data
element accessible by at least one node other than
the node comprising the respective output data in-
dicator.

14. A system for controlling an apparatus, wherein the
system comprises a processing module configured
to use a behavior tree (100) for tasks performed by
the apparatus (300), wherein the system is config-
ured to perform the method according to any of the
preceding claims.

15. A software product, configured to perform the meth-
od according to any of the claims 1 to 13, when run
on an assembly comprising a data processing sys-
tem and the apparatus.

49 50 



EP 4 040 293 A1

27



EP 4 040 293 A1

28



EP 4 040 293 A1

29



EP 4 040 293 A1

30

5

10

15

20

25

30

35

40

45

50

55



EP 4 040 293 A1

31

5

10

15

20

25

30

35

40

45

50

55



EP 4 040 293 A1

32

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 2017148830 A1 [0006]


	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

