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Abstract— In this paper, we consider several autonomous
robots with separate tasks that require coordination, but not a
coupling at every decision step. We assume that each robot sep-
arately acquires its task, possibly from different providers. We
address the problem of multiple robots incrementally acquiring
tasks that require their sparse-coordination.

To this end, we present an approach to provide tasks to mul-
tiple robots, represented as sequences, conditionals, and loops
of sensing and actuation primitives. Our approach leverages
principles from sparse-coordination to acquire and represent
these joint-robot plans compactly. Specifically, each primitive
has associated preconditions and effects, and robots can con-
dition on the state of one another. Robots share their state
externally using a common domain language. The complete
sparse-coordination framework runs on several robots. We
report on experiments carried out with a Baxter manipulator
and a CoBot mobile service robot.

I. INTRODUCTION

Multi-robot systems are often more reliable, affordable
and fault tolerant than single robots. However, they require
complex coordination mechanisms to be effective. Robots
can coordinate using a wide variety of techniques, ranging
from completely centralized to distributed approaches. There
are also many means to provide tasks to robots, including
programming each robot, providing goals in a domain to a
multi-agent planner, and directly teaching the robots.

In this work, we consider the problem of separately and
incrementally providing tasks to a group of autonomous
robots that need to infrequently coordinate. The robots may
have very different internal representations of their state,
actuation capabilities, and sensing capabilities. Furthermore,
they may acquire their tasks in different manners. For ex-
ample, a manipulator may be taught by a human through
natural language, and a mobile base may acquire tasks from a
planner. However, to pick up a package and deliver it, the two
robots must work together. In these kinds of tasks, we note
that the robots do not need to coordinate at every decision
step. In fact, much of their tasks can be completed entirely
independently. In literature, this concept of coordinating
when necessary is known as sparse-coordination [1]. In
terms of task representation, sparse-coordination represents
the joint state space only when the robots need to coordinate.
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Fig. 1: Baxter manipulator and CoBot mobile service robots
coordinated with the proposed approach.

Our goal is to enable heterogeneous robots, acquiring tasks
from different providers, to solve problems requiring sparse
coordination. We first note that coordinating different robots
requires a common means of communication. To this end, we
contribute a task representation for a robot to incrementally
acquire a task with preconditions and effects represented in
a shared domain language. Then, we present an approach
to sparsely coordinate robots using this task representation.
Specifically, each agent conditions on the state of other
robots to sparsely coordinate.

Tasks are represented in graph-based structures composed
of action and sensing primitives, conditionals, and loop
structures. The preconditions and effects of the actions are
written using a common domain language. Robots keep track
of their own state, and condition on the state of each other
by sending queries to interact. By only representing the
coordination between robots when necessary, this approach
is partially immune to the combinatorial explosion in the
number of states found in other representations.

Our contribution has been used to coordinate several
robots, including a Baxter and a CoBot robot. Baxter is
an industrial manipulator robot able to perform complex
manipulation tasks. CoBot is instead an omnidirectional
mobile service robot equipped with a variety of sensors
including a laser range finder, microphones, a camera, and
Microsoft Kinect sensors [3]. We first show an example of
how the two arms of a Baxter manipulator can be treated
as two autonomous agents and coordinated. We then show a
more complicated example involving a CoBot and the two
arms. Figure 1 shows both robots.

In the next section, we present an overview of related
work, with a focus on past research in representing multi-
agent plans compactly and on providing tasks incrementally
to a robot. We then introduce the technical details of our
approach, present demonstrative examples, and conclude
with a summary of the contributions and a brief discussion
of future work.



II. RELATED WORK

Our work is mainly related to the literature on multi-
agent planning and incremental task acquisition. Multiple
approaches have been proposed to represent multi-agent
plans. For example, there are several techniques to subdivide
joint tasks into smaller tasks that each agent can execute
autonomously or as part of a smaller group. These techniques
can rely on communication models [4], on dedicated archi-
tectures [5], [6], and on collections of conventions followed
by all team members [7]. Additionally, Coordination Graphs
compactly represent dependencies between the actions of
different agents, thus capturing the local interaction between
them [8]. Local interactions have also been exploited to min-
imize communication overhead during policy execution [9]
and in game-theory to obtain compact game representa-
tions [10]. These approaches rely on dependency analysis
to decompose independent parts of the initial representation.
Finally, Petri Net Plans are another framework for collabora-
tion, similar in principle to our approach [11]. However, the
plans are not acquired through user instruction, and there is
no query language for checking the state of other robots.
All of these approaches require that a complete plan is
given to each robot a priori. In our work, tasks are acquired
by the robot incrementally, and the provider specifies the
dependencies between different robot tasks.

Research also addresses the problem of acquiring a task
incrementally, focusing on composing robot primitives into
different task representations. An early approach that tackles
such a problem focuses on creating sequences of robot primi-
tives, which represent its action and sensing capabilities [12].
To support conditionals, tasks have also been represented
as acyclic graphs composed of nodes representing finite
state machines [13]. Tasks have also been represented as
formal logic goal descriptions [14], where the instructions
received from the provider are associated with formal logic
expressions that represent the task provided to the robot.

Recently, a more expressive framework based on In-
struction Graphs has been proposed to support teaching
tasks with loops and conditionals [15]. Other works have
proposed representations of parametric tasks that are defined
by the provider at an abstract level [16]. Neither of these
representations keep track of the state of the robot. In more
recent work, robot action and sensing primitives have been
associated with preconditions and effects [17], [18]. With this
additional information, the robot can propose goal-oriented
plans, instead of purely acquiring a task step-by-step.

All of these works on task acquisition focus on a single
robot, not addressing the problem of incrementally providing
tasks to multiple coordinating robots. In this work, we focus
on robots that sparsely-coordinate [1]. Sparsely coordinated
robots have tasks that require infrequent cooperation, not at
every decision step.

In the next section, we build upon the Instruction Graph
framework, first adding robot-primitive preconditions and
effects. Then, we allow robots to condition on the state of
each other to support sparse interactions.

III. APPROACH

We consider several autonomous robots with primitives
that represent their actions and sensing capabilities. Each
robot acquires its task separately and incrementally by inter-
acting with a provider, be it a user or a planner. Our goal
is to allow these robots to sparsely coordinate to complete
their tasks. In this section, we first describe our original
task teaching framework for individual robots. Then, we
present a detailed description of our task representation that
encapsulates the robot state, and our approach for multi-agent
sparse coordination.

A. Instruction Graphs

For an individual robot, not interacting with others, we
represent tasks as Instruction Graphs (IG) [15]. Instruction
Graphs are graphs where vertices represent robot-primitives,
while edges represent possible transitions between vertices.
Formally, an Instruction Graph is a graph G = 〈V, E〉. Each
vertex v ∈V is a tuple:

v = 〈id, InstructionType, f , P〉

where id is an integer, InstructionType is the type of the
vertex and f is a function with a set of parameters P. The
function f represents an action or sensing primitive that the
agent should perform when visiting the vertex.

Each Instruction Graph is executed starting from an initial
vertex, until a termination condition is reached. During
execution, the InstructionType of the vertex describes how
the robot should transition to the next vertex based on the
output of the function f. The IG framework defines the
following InstructionTypes:
• Do and DoUntil: Used for sequences of primitives. f

has no output, and the algorithm transitions along the
sole out-edge. Here, we will refer to both of these types
of nodes simply as Actions.

• Conditionals: Used for sensing actions. The algorithm
interprets f as a boolean value used to transition to one
of two children.

• Loops: Used for looping structures. The algorithm in-
terprets f as a boolean value, and vertices inside of the
loop are repeated while the condition is true.

Figure 2 shows an example node with id 2, InstructionType
Action, function move forward, and parameter 5 meters. This
corresponds to the second node in an IG, which executes a
robot primitive to move a mobile base forward 5 meters. We
refer the reader to the original work on Instruction Graphs
for a more detailed overview [15].

Fig. 2: Example of IG node with id 2, InstructionType
Action, function move forward, and parameter 5 meters.

Instruction Graphs are incrementally constructed through
the interaction with a user. Specifically, natural language



commands are processed by a probabilistic parser and
grounder [20]. This allows the robot to learn the groundings
from natural language to robot primitives, environmental
features, and tasks. The robot starts with an initial knowledge
base of groundings and learns more over time by asking the
user when it is unsure of how to ground an expression.

B. Sparse-Coordination Instruction Graphs

To sparsely coordinate, robots must keep track of their
state and be able to query the state of one another. We define
Sparse-Coordination Instruction Graphs (SCIG) as graphs
G = 〈V, E〉 where each vertex v is a tuple:

v = 〈id, InstructionType, f , P, Prec, Eff 〉

where the additional elements Prec and Eff respectively
represent sets of preconditions and effects of the function
f. More generally, each function f has an associated set of
literals Lf that represents its preconditions and effects. Thus,
we define:

L =
⋃
∀ f

L f

as the common domain language used by all of the robots.
We represent each literal using STRIPS semantics [2]. In
particular, each action adds or removes positive literals from
the robot’s current state. While robots may represent their
internal state differently, their primitives express this state in
terms of the common set of strips literals, L .

To associate these preconditions and effects to actions,
each robot sensing and actuation primitive is defined in
the Planning Domain Definition Language (PDDL) [19].1

For example, a Baxter manipulator may have an action
pick up(object id), to pick up an object with a given ID.
Internally these objects are represented as a 3D point in
space and bounding boxes. However, the effects of the action
are to remove the literal hand empty, and then add the
literal holding(object id). Figure 3 shows an example PDDL
definition for Baxter’s “pickup” action. Currently, we assume
that all changes in state are captured by the robot primitives
and that each robot can only modify its own state.

(:action pickup
:parameters (?x)
:precondition (and (OBJECT ?x)

(hand_empty))
:effect (and (holding ?x)

(not (hand_empty)))

Fig. 3: Example PDDL definition for the primitive “pickup”.
As preconditions, its parameter must be an object, and the
hand must be empty. The effects are that the hand is no
longer empty, and the robot is holding an object.

During execution, each robot keeps track of its own
state. Specifically, the state predicates are either appended

1Although we represent actions using PDDL, any other language could
be used to define the common domain language.

or deleted from the robot’s state according to the effects
of the executed action. We introduce a special function
check literal, used in Conditional and Looping vertices that
can condition on the state of any agent. The check literal
function takes as input a unique robot identifier and a query.
In our framework the query is represented as a set of STRIPS
predicates, possibly composed with the and, or and not
operators. The query is routed to the the robot with the
corresponding identifier.

When a robot receives a query, it is evaluated against its
current state. Each robot adopts a closed-world assumption
when responding to queries. In particular, the robot checks
that positive literals are present in its state and that negated
literals are absent in its state. The result of this query is
returned to the requesting robot. In this way each robot
has only a representation of its own state, and makes no
assumptions about the state of another.

Figure 4 shows a partial example of a SCIG for a CoBot
mobile base, where the check literal function is used to
condition on the state of a Baxter manipulator. Specifically,
the CoBot will perform the move to action if Baxter’s state
does not contain hand empty.

Fig. 4: Partial example of a SCIG for a CoBot conditioning
on the state of a Baxter manipulator. If Baxter’s state does not
contain hand empty, CoBot will perform the move to action.

With this approach we are able to implement coordination
at a high level. In particular, we define several useful
coordination actions from Loops and Conditionals:
• Wait Until: The robot waits until another robot is in

some state. This is implemented with a Loop.
• Act Until: The robot repeats some actions until another

robot is in some state. This is implemented with a Loop.
• Ask: The robot conditions on the state of another robot.

This is implemented with a Conditional.
We provide examples of each of these forms of coordination
in the next sections.

We note that for sparse-coordination, many of typical
problems of multi-robot communication do not arise. For
instance, consistency is not an issue, because the robots
keep track of only their own state, and directly query each
other’s state as needed. Since coordination is infrequent, and
at a high-level, the robots can also cooperate in environ-
ments with high-latency and low-bandwidth. In this work,
we do not address the problem of faulty sensors or non-
deterministic action effects. For now, we assume that the
robot-primitives are all fault tolerant.
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Fig. 5: Sparse-Coordination Instruction Graphs extracted from the text in Figure 6. Specifically, (a) represents the graph for
the left arm, while (b) represents the graph for the right arm. The nodes in yellow represent the vertices that require a query
to another robot’s state.

IV. DEMONSTRATIVE EXAMPLES

We coordinated several robots with the presented ap-
proach, including a manipulator and a mobile base. In this
section we show how multiple robots can be taught to
perform different tasks that involve sparse-coordination. In
particular, we show how a Baxter robot can be instructed
to perform a manipulation task during which its two arms
need to sparsely interact with each other. Then, we extend
this example by considering also a CoBot mobile base. In
this case, we show how the two arms and the mobile service
robot can be instructed to deliver and store an object.

A. Store Task

We first show how the two arms of a Baxter manipulator
can be treated as separate agents and coordinated. We denote
the arms as left arm and right arm. Table I shows the set
of robot primitives for both arms, with their associated
preconditions and effects. Our task is to have the left arm
assist the right arm in finding an unobstructed location to
place an object.

TABLE I: Baxter arms primitives with associated precondi-
tions and effects.

Action Primitives Preconditions Effects
wave() - -

wait(time) - -
is visible(landmark id) - -

move to(location) -
-pointing,

-at(old location),
+at(location)

pick up(object id) hand empty
-hand empty,

+holding(object id)

drop(object id) holding(object id)
-holding(object id),

+hand empty

point(location id) -

-at(old location id),
+at(location id),

+pointing,
+pointing at(location id)

Left arm:

wave while right hand is empty
move to location 1
if landmark 1 is visible
point to location 1
otherwise point to location 2

Right arm:

pick up object 1
wait while left arm is not pointing
if left arm is pointing at location 1
move to location 1
otherwise move to location 2
end if
drop object 1

Fig. 6: Natural language input provided to the two arms. The
names of the agents are shown in red, and their states are
shown in blue.

In this example, a user describes the task to each agent
in two separate teaching sessions through natural language.
Specifically, the left arm is instructed to wave until the
right arm picks up an orange wooden block (Figure 9a).
At this point, the state of the right arm is changed to
holding(object 1) and the function check literal(right arm,
hand empty) returns false. After realizing this fact, the left
arm starts checking if a landmark can be detected at the
drop position (Figure 9b). In the case a landmark is detected,
the left arm points at it, reaching the pointing at(location 1)
state. The function check literal(left arm, !pointing) now
returns false and the right arm drops the block at location 1
(Figure 9c). Instead, when the landmark is not detected the
left arm points at an alternative location (location 2) where
the orange block can be dropped (Figure 9d).

Figure 6 shows a natural language description of the task
provided to the two arms. Instead, Figures 5a and 5b show
the corresponding Sparse Coordination Instruction Graphs.
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Fig. 7: (a) The left arm is shown waving until the right arm picks up an orange wooden block. (b) The left arm checks if
the drop position is open. (c) Since this position is open, the left arm points at it where the object will be placed. (d) In the
second run, since the drop position is not open, the left arm points at an alternative position.

In this specific case, the natural language description of the
tasks was parsed through the aid of specifically developed
parsers, similarly to a previous work [20]. The descriptions
were grounded to objects and locations of a knowledge base
containing a high-level description of the environment and
the robot primitives. In this example we assume that the
two robots have the same high-level representation of the
environment. In other words, we assume that the two robots
agree on the position of the two possible locations. The
execution of the task can be seen in the video attached.2

B. Deliver and Store Task

Next, we extend the previous example by considering also
a CoBot robot [3]. CoBot must coordinate with the Baxter’s
arms in order to deliver and store an object. To this end,
we modify the previous example by making the right arm
wait for CoBot to be at a specific location. Note that the
right arm is instructed to wait just for simplicity. It could
also be instructed to do other work while waiting for CoBot’s
arrival. When CoBot reaches the state at(location 3), the
right arm will pick up the delivered object from CoBot’s
basket, storing it at the location pointed out by the left arm.
For CoBot, we defined the robot primitives shown in table
II. For Baxter we used the previously described primitives.

TABLE II: CoBot primitives with associated preconditions
and effects.

Action Primitives Preconditions Effects
Say(message) - -

Move to(location) -
-at(old location id),

+at(location id)

The user teaches the tasks to the robots in three sepa-
rate teaching sessions. Figure 8 shows a natural language
description of the tasks provided to CoBot and to the
right arm. The task given to the left arm is the same as in the
previous example. Figure 10 depicts the Sparse Coordination
Instruction Graph extracted for CoBot. Since the SCIG of the

2http://youtu.be/4nLjuLhFUvk

right arm is almost identical to Figure 5b, we omit it due to
space constraints.

CoBot:

move to location 3
say ‘‘I am here to deliver a package"
wait while left arm is not pointing
move to location 4

Right arm:

wait while CoBot is not at location 3
pick up object 1
wait while left arm is not pointing
if left arm is pointing at location 1
move to location 1
otherwise move to location 2
end if
drop object 1

Fig. 8: Natural language input provided to CoBot and the
right arm. The description of the left arm task instead is the
same shown in Figure 6. The names of the robots are shown
in red while their states are shown in blue.

C. Discussion

Sparse-Coordination Instruction Graphs allow users to
teach a wide-variety of tasks that require multi-agent coordi-
nation. In particular, they are well suited to tasks that require
high-level cooperation between robots. We have found the
approach especially effective with robots that have separate
goals. For instance, our fleet of CoBots perform many tasks,
such as escorting people and picking up objects. Some of
these tasks require brief interaction with Baxter, which has its
own goals to accomplish. The robots coordinate infrequently
because their goals require a limited amount of interaction.

We can also represent joint-plans with goals that require
a tight coupling of robot actions at each decision step. An
example of such a task is the bimanual manipulation of a
large object. However, each robot will need to make many
queries to represent most of the joint-state space before
acting. Thus, it is often impractical for a user to teach tightly
coordinated tasks to the robot. Currently, tightly-coordinated
tasks can be taught to the robots using a planner.
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Fig. 9: (a) CoBot reaches the pick up location while the right arm is waiting and the left arm is waiving. (b) The right arm
can now pick up the object. (c) Detailed view of Baxter picking up the object. (d) The left arm points at location 1, the
right arm drops the object, and CoBot leaves.

Fig. 10: SCIG extracted from the CoBot’s task description
in Figure 8. Node 3 requires a query to another robot’s state,
in this case Baxter’s left arm.

V. CONCLUSION

In this paper, we addressed the problem of multiple
robots separately and incrementally acquiring tasks that
require coordination. By leveraging principles from sparse-
coordination we enable robots to acquire and represent joint-
robot plans compactly. Specifically, we introduced Sparse-
Coordination Instruction Graphs, which encapsulate robot-
primitive preconditions and effects. The robots act indepen-
dently, and only coordinate when necessary by querying
each other’s state. We demonstrated this approach with two
examples. First we treated both arms of a Baxter robot as
separate agents and had them coordinate to store an object
at an unobstructed location. Then, we extended this example
by having a CoBot mobile base deliver the object that the
arms stored.

As a future work, we are investigating extensions to rep-
resent tasks that require tight coordination more compactly.
We are also interested in how our coordination approach can
be used with knowledge-acquiring actions. For instance, in
cloud robotics a robot-primitive may request information, or
even queue a task on another robot.
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