
Knowledgeable Robots
Through Multimodal HRI

Department of Computer, Control, and Management Engineering
"Antonio Ruberti", "Sapienza" University of Rome

Dottorato di Ricerca in Ingegneria Informatica – XXVIII Ciclo

Candidate

Guglielmo Gemignani
ID number 1401792

Thesis Advisor

Prof. Daniele Nardi

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Engineering
in Computer Science

September 2015



Thesis defended on December 10th 2015
in front of a Board of Examiners composed by:

Prof. Daniele Nardi (chairman)
Prof. Giuseppe De Giacomo
Prof. Domenico Lembo
Prof. Barbara Caputo
Prof. Tiziana Catarci

Knowledgeable Robots Through Multimodal HRI
Ph.D. thesis. Sapienza – University of Rome

© 2015 Guglielmo Gemignani. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: December 29, 2015

Author’s email: gemignani@dis.uniroma1.it

mailto:gemignani@dis.uniroma1.it


iii

Acknowledgments

I like to think of this work as the result of a long-term project stemmed from the unique
relationship established with my PhD advisor, Prof. Daniele Nardi. In these last three years,
Prof. Nardi has been not only the best advisor I could ever hope for, but also a friend and a
life mentor. A big part of who I am now is the result of his teachings and suggestions. So a
big thanks goes to him, to one of the persons that have shaped my life the most.

During my PhD, I was often helped by Prof. Luca Iocchi, Dr. Giorgio Grisetti, and Prof.
Luigia Carlucci Aiello to whom I would also like to express my deep gratitude. I owe a big
part of what I know now about robotics and artificial intelligence to them.

This PhD has given me the opportunity to work with great researchers from all over the
world. In particular, I would like to thank Prof. Manuela Veloso for hosting me in her lab
and for her invaluable research guidance during my visit at Carnegie Mellon University.
I would also like to thank Dr. Nick Hawes for the great collaboration we had and Dr.
Subramanian Ramamoorthy for all the ideas shared during his visit.

The work undertaken would have been so much harder if I didn’t meet several great
friends during these three intense years. In particular I would like to express my gratefulness
to Fabio, Roberto, Francesco, Jacopo, Claudio, Andrea, Steve, Dominik and all the other
Lab Ro.Co.Co. members. They shared with me great moments in Rome, inside and outside
the university. Also, I would like to acknowledge my friends at Carnegie Mellon University.
In particular, I would like to thank Steven, Tiago, Rui, Juan Pablo, Vittorio, Harri, Andres,
Manuel and all the members of the CORAL Group for making my six months in Pittsburgh a
memorable experience.

I would like to thank my physicist friends, specifically Livia, Robertone, Francesco,
Andrea, Peter, Guglielmo, Bruno, Guido, Ivan, and Silvio. Thank you for being present in
my life despite the distance that divides us. Equally, my lifelong friends have an incessant
presence in my life despite my recurrent habit of being absent from home; so thank you
Andrea, Emanuele, Francesca, Francesco, Giulia, and Lara for your invaluable friendship.

A big thanks goes to Caterina, for her incessant love and support given to me in spite of
life’s attempts to keep us separated. I thank every day for her presence in my life. I wouldn’t
be the person that I am now without her.

I would not be here if it wasn’t for my relatives. Thanks for your constant teaching and
valuable support. You have been some of the most important life teaching figures in my
entire life. Finally, thank you Mom for everything you have ever done for me. I miss you.





v

Contents

1 Introduction 1

2 Related Work 7
2.1 Related Work on Symbiotic Autonomy and HRI . . . . . . . . . . . . . . . 8

2.1.1 Natural Language HRI . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Related Work on Semantic Mapping . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Fully Automated Approaches . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Human Augmented Mapping . . . . . . . . . . . . . . . . . . . . . 11

2.3 Related Work on Task Representation and Teaching . . . . . . . . . . . . . 13

2.3.1 Task Representation and Execution . . . . . . . . . . . . . . . . . 13

2.3.2 Task Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Related Work on Qualitative Spatial Reasoning in Robotics . . . . . . . . . 19

3 Acquiring Environmental Knowledge 21
3.1 Aim, Assumptions and Contributions of the Work . . . . . . . . . . . . . . 22

3.1.1 Environmental Knowledge Representation . . . . . . . . . . . . . . 24

3.1.2 Knowledge Acquisition . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Knowledge Usage in Common Tasks . . . . . . . . . . . . . . . . 25

3.1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Representation of the Robot’s Knowledge . . . . . . . . . . . . . . . . . . 26

3.2.1 Domain Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 World Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Acquisition of the Robot’s Knowledge . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Metric Map and Instance Signatures Construction . . . . . . . . . . 30

3.3.2 Semantic Grid Map and Topological Graph Generation . . . . . . . 32

3.3.3 On-line Knowledge Acquisition . . . . . . . . . . . . . . . . . . . 34

3.4 Robot Behavior using the knowledge base . . . . . . . . . . . . . . . . . . 35

3.4.1 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Petri Net Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3 Knowledge Base Maintenance . . . . . . . . . . . . . . . . . . . . 38



vi Contents

3.4.4 Task Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Robot Software Component . . . . . . . . . . . . . . . . . . . . . 43
3.5.2 Speech Component . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.1 System Component Evaluation . . . . . . . . . . . . . . . . . . . . 46
3.6.2 Whole-system Evaluation . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . 54

4 Acquiring Procedural Knowledge 55
4.1 Parametric Task Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 System Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.4 Section Summary and Discussion . . . . . . . . . . . . . . . . . . 69

4.2 Task Generalization and Proposal . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.1 Instruction Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.4 Section Summary and Discussion . . . . . . . . . . . . . . . . . . 81

4.3 Multi-Robot Task Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Demonstrative Examples . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.3 Section Summary and Discussion . . . . . . . . . . . . . . . . . . 89

4.4 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . 92

5 Acquiring User Knowledge 93
5.1 Learning to Understand Each Other . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.3 Section Summary and Discussion . . . . . . . . . . . . . . . . . . 102

5.2 Learning Spatial Preferences for Task Execution . . . . . . . . . . . . . . . 102
5.2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.2 Demonstrative Examples . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.3 Section Summary and Discussion . . . . . . . . . . . . . . . . . . 110

5.3 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusion 111

Bibliography 115



1

Chapter 1

Introduction

Robots are expected to be the next technological frontier, impacting our society in many
sectors, including security, industry, agriculture, transportation, and services. In particular,
robots are expected to become consumer products, that massively enter our homes to be
part of our everyday life. This naturally brings back the view of the robot as an intelligent
agent, capable of smoothly interacting with humans and operating in real life environments,
whose features are undoubtedly challenging. In addition to the recent developments in
robotics, other technological advancements make it more feasible to address the design of
robots as intelligent agents. Specifically, new sensors allow for more effective approaches
to perception, new devices support multi modal interaction with the user, and cloud-based
technologies greatly enhance robots’ computational capabilities.

This notwithstanding, it is currently unrealistic to deploy robots in domestic environ-
ments, enabling them to autonomously deal with complex scenarios and different requests
from the users. A key limiting factor is the lack of awareness and specific knowledge that
robots currently have. Also, in order to support the implementation of simple commands,
state of the art systems typically require a significant engineering effort to be deployed in a
specific scenario. Additionally, even with such an effort, robots often are unable to accom-
plish their tasks due to unexpected situations unforeseen by their developers at programming
time.

Because of these issues, a growing number of researchers has started to accept the
fact that our robots will have to cope with their own limitations for a long period of
time. Consequently, in recent years such deficiencies have started to be encoded in the
robots’ internal representation, in order to recognize situations that can not be managed
autonomously. For example, robots are currently unable to autonomously recognize all the
common objects found in a given environment. Also, they are currently unable to reliably
manipulate the significant variety of ordinary items found in domestic or office environments.
In such situations, multiple authors have proposed to rely on the interaction with the users to
enable robot operation. By proactively asking for help through a vocal interface, multiple
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robots have been successfully deployed in real scenarios [1, 2].

Nevertheless, even if we accept robots’ limitations and allow them to exploit human help
to successfully achieve their goals, there are still various issues that need to be addressed.
Reliably grounding the given commands into the operational environment, understanding the
specific needs of every unique user or resolving the ambiguities arising from human-robot
interactions are among the problems that still require a complete solution. As we will
show more in detail in the next chapter, recent works have proposed different solutions
to such problems. However, such solutions often rely on general representations of the
operational environment and the users in it. For instance, common models of objects and
rooms found on the web or handcrafted are used for recognition algorithms. Models of
common language expressions or user behaviors are assumed while designing human-robot
interactions. General user needs are considered while devising the task that the robots will
have to execute. We believe that such generalizations of peculiar aspects of the operational
environment are not always valid. Instead, we imagine robots able of adapt to the need of
every user and to every setting they are deployed in to effectively carry out their tasks.

Following this approach, in this work we aim at enabling robots to better adapt to such
scenarios by exploiting human-robot interactions. Specifically, through the interaction with
the user, we aim at acquiring specific knowledge about the operational environment, the
tasks that need to be accomplished, and the individual humans living in it. We believe that
these three types of knowledge will support adaptable robotic behaviors.

Environmental Knowledge

When first deployed in a new environment a robot needs to first obtain a specific spatial and
semantic representation of the environment to support its task execution. In literature, the
process of acquiring environmental knowledge for robots is called semantic mapping [3].
The maps created during this process are an abstract representations of the objects and rooms
contained in the environment, associated to physical and spatial properties that are used
by robots to reason during task execution. Indeed, when robots are assigned a command,
they need to “contextualize” it in the operational environment through a grounding process.
Semantic maps are thus needed to ground commands in the physical world.

In recent years, multiple approaches have been proposed to build semantic maps. Many
of the techniques proposed try to exploit knowledge found on the web or specifically
handcrafted, for enabling robots to autonomously learn about the environment they are
deployed in. However, current approaches for autonomous semantic mapping still have
problems allowing a robotic system to enter an unknown environment and create a rich
and accurate semantic map. One issue that withholds the realization of such a task is the
difficulty of reliably detecting and classifying the objects found in everyday environments.
Dedicated algorithms are being developed to robustly recognize common objects and rooms
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given a huge variety of prior examples [4]. While these approaches will in the future improve
their performance on common objects, the problem is even more difficult in the case of
uncommon or less conventional ones.

Accepting the current limitations of our robots, we propose to exploit human help to
build semantic maps. Specifically, we contribute an approach to perform semantic mapping
in indoor environments, leveraging multimodal interactions with non-expert users. The
user guides the robot through vocal commands, teaching it about objects and rooms in the
environment with the aid of a laser pointer. Through this mechanism, our robots are able to
enter an unknown environment and create a specific and rich semantic map. This map is
then used to execute tasks involving previously unknown objects and rooms, also supporting
various form of reasoning. Finally, this semantic map can be updated through human-robot
interaction to cope with the dynamic nature of the environment, and allow for long term
deployment.

Procedural Knowledge

Once a robot is able to acquire environmental knowledge, it also needs to be able to learn
tasks specified by the user. In fact, robots often need to cope with multiple situations
that cannot be foreseen at design time, due to the complexity of the environment they are
deployed in and the specific features and habits of every human they interact with. In
literature, different mechanisms have been proposed to enable robots to perform tasks. For
instance, many robots require their task steps to be directly programmed. Others require
actions, states and goals to generate tasks or policies. Others are able to learn through the
observation or interaction with a user.

Nevertheless, only recently new approaches have been proposed to allow non-expert
users to teach robots new tasks. In particular, some researchers have proposed to exploit
natural language to teach robots. In these approaches, the robot is provided with a set of
sensing and action capabilities that it already knows how to perform. The user then describes
the new tasks through natural language as a combination of these primitives. As an example,
let’s consider a manipulator robot. This robot might be able to open and close its grippers,
detect objects and move its arms toward them. In this case, the user could describe how to
pick up and store an item in terms of these primitives.

As we will see in the next chapter, most of the teaching approaches based on natural
language only enable users to teach specific tasks (e.g., delivering the blue book to room 123),
without allowing them to teach more general ones (e.g., delivering an object to a location).
Additionally, these approaches do not leverage previous task knowledge to speed up the
teaching process, while considering only single non interacting robots. Our contribution to
the state of the art of interactive task teaching addresses three problems. We first discuss
an approach for allowing non-expert users to teach to a robot more general and parametric
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tasks. Next, we discuss a method for extracting general tasks from a library of known ones
to support the user in the teaching process by suggesting possible autocompletions. Finally,
we show how specific coordination techniques can be exploited to teach multiple robots how
to coordinate through a natural language interaction with the user. With these contributions
we show how to enable multiple-coordinating robots to proactively learn new parametric
tasks through the natural language interaction with the user.

User Knowledge

All the contributions previously outlined heavily rely on the interaction with the user. Due to
the peculiarity of every human, a robot should also be able to learn and adapt to specific user
characteristics. To be able to achieve this goal, robots should first be able to acquire specific
models of users. In literature, the process of acquiring knowledge about users is called user
profiling. A user profile can be defined as a model that summarizes the essential information
about a specific human. These models are used to represent the different preferences,
interests, background and goals of a human using a specific technology. Discovering and
modeling these differences is vital to provide users with personalized services.

While a considerable amount of user profiling approaches has been developed for soft-
ware applications [5], robots able to adapt to user preferences have been rarely considered
due to the limited amount of systems operating in human-populated environments. Nonethe-
less, in the future we imagine robots capable of adapting to various aspects of every user they
interact with. In particular, while observing users interacting with our robots, we noted two
specific aspects that varied between users: different language expressions used to interact
with a robot and different understandings of qualitative spatial relations.

Specifically, we consider two problems related to user profiling. First, we consider the
scenario in which a human needs to instruct an unknown autonomous robot through a natural
language interface. In this case, the user may be able to imagine its capabilities, while not
knowing how to instruct it. To this end, we present an approach that allows a robot to learn
new expressions used by the user to refer to objects in the operational environment. This
mechanism also enables the user to recognize the robot understanding capabilities and learn
how to interact with it. Additionally, we consider the scenario in which a user instructs a
robot using a qualitative spatial relation (e.g., "go in front of the desk near the entrance").
In this setting, we notice that different users understand different positions given the same
spatial relation. To this end, we present a preliminary approach that allows the robot to
learn specific models of these spatial relations through natural language interaction. This
learning process is carried out by asking the user for a feedback after the completion of
each task. While multiple other issues regarding user profiling still need to be tackled, these
two contributions provide valuable examples of successful adaptations to specific aspects of
human individuals.
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Structure of the Thesis

The rest of the dissertation is organized in the following way: Chapter 2 discusses the work
most closely related to this thesis, pointing out the aspects in which our work contributes to
the state of the art. Chapter 3 describes our approach to environmental knowledge acquisition
based on multimodal human-robot interaction. Next, Chapter 4 discusses our contributions
to task teaching, considering three issues related to this research topic. Finally, Chapter 5
addresses the problem of user profiling for improving robotic task execution, while Chapter
6 concludes the thesis.

Related Publications

We would like to note that parts of this thesis have been published in the following articles,
conference and workshop papers:

� Living with Robots: Interactive Environmental Knowledge Acquisition. G. Gemignani,
R. Capobianco, E. Bastianelli, D. Bloisi, L.Iocchi and D. Nardi. Robotics and
Autonomous Systems, RAS 2015.

� Multi-Robot Task Acquisition through Sparse Coordination. G. Gemignani, S. Klee,
M. Veloso, and D. Nardi. International Conference on Intelligent Robots and Systems,
IROS 2015.

� Language-Based Sensing Descriptors for Robot Object Grounding. G. Gemignani, M.
Veloso, and D. Nardi. 19th Annual RoboCup International Symposium, 2015. Best
Paper Award.

� Approaching Qualitative Spatial Reasoning About Distances and Directions in Robotics.
G. Gemignani, R. Capobianco, and D. Nardi. 14th Conference of the Italian Associa-
tion for Artificial Intelligence, AI*IA 2015.

� Graph-Based Task Libraries for Robots: Generalization and Autocompletion. S.
D. Klee, G. Gemignani, D. Nardi, and M. Veloso. 14th Conference of the Italian
Association for Artificial Intelligence, AI*IA 2015.

� Teaching Robots Parametrized Executable Plans Through Spoken Interaction. G.
Gemignani, E. Bastinaelli, and D. Nardi. 14th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2015.

� On Task Recognition and Generalization in Long-Term Robot Teaching (Extended
Abstract). G. Gemignani, S. Klee, M. Veloso, and D. Nardi. 14th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015.
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� Task Recognition and Generalization in Long-Term Robot Teaching. G. Gemignani, S.
Klee, M. Veloso, and D. Nardi. Autonomous Robots and Multirobot Systems, ARMS
2015.

� Knowledge-Based Reasoning on Semantic Maps. R. Capobianco, G. Gemignani, D.
Nardi, D. Bloisi, and L. Iocchi. Knowledge Representation and Reasoning in Robotics
Symposium at AAAI Spring Symposium, 2014.

� Symbiotic Semantic Mapping. G. Gemignani , D. Nardi, D. D. Bloisi, R. Capobianco,
and L. Iocchi. International Symposium on Experimental Robotics, ISER 2014.

� Automatic Extraction of Structural Representations of Environments. R. Capobianco,
G. Gemignani, D. Bloisi, D. Nardi, and L. Iocchi. 13th International Conference on
Intelligent Autonomous Systems, IAS 2014.

� On-line Semantic Mapping. E. Bastianelli, D. Bloisi, R. Capobianco, F. Cossu, G.
Gemignani, L. Iocchi, and D. Nardi. 16th International Conference on Advanced
Robotics, ICAR 2013.

� Knowledge Representation for Robots through Human-Robot Interaction. E. Bas-
tianelli, D. Bloisi, R. Capobianco, G. Gemignani, L. Iocchi, and D. Nardi. Knowledge
Representation and Reasoning in Robotics Workshop at 29th International Conference
on Logic Programming, 2013.
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Chapter 2

Related Work

There is a growing consensus that some form of knowledge representation needs to be
embedded in robotic systems, in order to enable them to operate in various types of en-
vironments and interact with humans through natural language. Such ideas are traceable
in different forms within multiple areas of robotics. Historically, common sense knowl-
edge has tried to be embedded in many computer programs, starting as early as 1963 [6].
Subsequently, common sense knowledge has started to be applied to robots. In particular,
Shakey [7] has been the first example of general-purpose mobile robot able to reason about
its action and interact with users. Such a robot could perform tasks that required planning,
route-finding, and rearranging simple objects.

After the early-day work in AI, knowledge representation for robots has mainly focused
on addressing the problems of representing the environment [8] and the actions [9] to be
performed. In the former work, Kuipers and Byun present one of the first methods for robot
exploration, mapping, and navigation in large-scale spatial environments. In the latter article,
Levesque and Reiter present one of the first languages for representing and executing actions
on an autonomous robot deployed in a dynamic and incompletely known world. Such works
have inspired a notable amount of projects, affecting, up to these days, several aspects of the
research fields regarding robotics and artificial intelligence.

One of the ultimate goals of the Robotics and Artificial Intelligent research community
consists of designing an autonomous robot able to intelligently operate in human-populated
environments. However, there still exist numerous technical limitations that stop the achieve-
ment of such a goal. To this end, many researchers have started to represent perceptual,
physical, and reasoning limitations in their robot internal representation and began lever-
aging humans by proactively asking for their help. In literature, the concept of allowing a
robot to recognize its own limitations and proactively ask for help is known as Symbiotic
Autonomy [1] or Symbiotic Robotics [10].

This thesis embraces such an approach of relying on humans to overcome robotics
limitations and to allow them to adapt to the different scenarios encountered. Due to this
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fact, in the rest of this chapter we will first address the related work on the central topic
of Human Robot Interaction and Symbiotic Autonomy. Next, we will discuss the related
work on acquiring and representing environmental knowledge (also known in literature as
semantic mapping), later discussing the literature on action representation and task teaching.
We then conclude the chapter with a brief overview of the main works on Qualitative Spatial
Reasoning in robotics. Such a research topic is in fact mainly related to the problems
addressed in Chapter 5 of this thesis.

2.1 Related Work on Symbiotic Autonomy and HRI

As previously stated, Symbiotic Autonomy [1] or Symbiotic Robotics [10] is a general
philosophy adopted for robot design. When embracing such a principle, robots are not seen
any more as fully autonomous, solitary machines working in an unmodified and unknown
environment. Instead, they are seen as pervasive robotic systems working in symbiosis with
people and their environments. By embracing this developing philosophy, researchers have
started to explicitly represent inside robots their own limitations, in order to decide when
to exploit human help to overcome their inabilities. Due to the nature of such an approach,
Symbiotic Autonomy heavily relies on human-robot interaction for task execution.

Human-Robot Interaction (HRI) is the field that studies and designs robotic systems
that need to interact with humans. Interaction, by definition, requires communication.
Communication between a human and a robot may take several forms, but these forms
are largely influenced by whether the human and the robot are close to each other or not.
Generally, remote interaction with mobile robots is often referred to as teleoperation or
supervisory control, while remote interaction with a physical manipulator is often referred
to as telemanipulation. Instead, proximate interaction with mobile robots may take the form
of a robot assistant, and it may include a physical and social interaction. In this thesis, we
will mainly focus on proximate interaction through natural language briefly surveyed in the
following.

2.1.1 Natural Language HRI

Initial studies on natural language understanding can be traced back to SHRDLU [11],
a system able to process natural language instructions to perform actions in a virtual
environment. Inspired by this system, multiple researchers extended SHRDLU’s capabilities
into real-world scenarios, soon starting to tackle related problems, including natural language
on robotics systems.

Research has applied speech-based approaches to deploy robotic systems in a wide
variety of environments. For example, these approaches have been used in manipulators [12,
13], aerial vehicles [14], and wheeled platforms [15, 16]. Moreover, some robots present
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on the market support vocal interactions with users, such as the NAO Humanoid [17], and
robuBOX-Kompa [18]. Moreover, several prototypes have been developed for social robots
carrying out specialized tasks, such as attending as a waiter [19], as a receptionist [20] or as a
bartender [21]. Some of these specialized tasks target industrial goals, such as assembly [22],
or moving objects [23]. Dialog has also been used to teach robots how to accomplish a
given task, such as giving a tour [24], delivering objects [25], or manipulating them [26].
Finally, other related works have combined speech-based approaches with other types of
interactions [27, 16]. Specifically, in the former work the authors have developed a theory of
mind for the interacting user, built upon perspective taking, multi-modal communication, and
a symbol grounding capability. Instead, in the latter case, the authors present a multi-modal
approach for building on-line a semantic map of the environment.

More recently, several domain-specific systems that allow users to instruct robots through
natural language have been presented in literature. For example, Kollar et al. [28] and
MacMahon et al. [29] present different methods for following natural language route
instructions by decoupling the semantic parsing problem from the grounding problem. In
these works, the input sentences are first translated to intermediate representations, which are
then grounded into the available knowledge base. Instead, Chernova et al. [30] show how to
enable natural language human-robot interaction in a scenario of collaborative human-robot
tasks, by data-mining past interactions between humans. Dzifcak et al. [31] address the
problem of translating natural language instructions into goal descriptions and actions by
exploiting λ−calculus. However, these approaches are not able to incrementally enhance
their natural language understanding from the continuous interaction with the user. Such
a problem has been faced by Kollar et al. [32]. By exploiting the dialog with the user, in
this work the authors present a probabilistic approach able to learn referring expressions for
robot primitives and physical locations in a map.

In the works presented in this thesis we heavily adopt natural language interactions.
Specifically, during the interactions we first capture the meaning of the commands uttered by
a user through the concept of frames [33], later grounding them as discussed in Section 3.5.2.
Additionally, in Chapter 5 we present an approach inspired to the work presented by Kollar
et al. [32]. However, we make an additional step forward, assuming the user to be unaware
of the capabilities and the internal representation of the robot. With this assumption, we
propose an approach for allowing a robot to recognize unknown object properties contained
in the received commands and warn the user about them. With this approach, on one hand
the user is able to understand over time what a robot can and cannot ground. On the other
hand, the robot can leverage past interactions to learn new references used by the user to
refer to specific objects in the environment.
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2.2 Related Work on Semantic Mapping

While developing cognitive robots, there has been a growing tendency to introduce high-level
semantic knowledge into the developed systems. The question of what should count as
semantic knowledge has been asked repeatedly in the history of philosophy. More recently,
semantic knowledge has been the subject of much debate in the Artificial Intelligence
community.

Hertzberg and Saffiotti [3] characterized semantic knowledge in robotics by two proper-
ties: the need for an explicit representation of knowledge inside the robot; and the need for
grounding the symbols used in this representation in real physical objects, parameters, and
events. In the editorial, the two authors stress the fact that, independently from the specific
formalism adopted to represent semantic knowledge, semantic mapping goes far beyond
attaching labels to a set of sensor data. These labels have in fact to be embedded in a domain
theory in order to allow the robot to manipulate and perform reasoning on them. In other
words, to become meaningful concepts, the labels need to co-exist with other categories in
some form of ontology in order to avoid inducing meaning just to a human observer and not
to the robot. Additionally, the acquired semantic knowledge should be effectively grounded
in the robot’s sensor and motor signals. Knowledgeable robots should in fact be able to
recognize objects and assess the truth or falsity of propositions from the sensor data stream
of the given sensors.

Nowadays, many robotic systems embody some sort of semantic knowledge. In general,
the methods proposed for semantic mapping can be grouped into two main categories, by
distinguishing fully automatic methods from approaches involving a human user to help the
robot in the semantic mapping process.

2.2.1 Fully Automated Approaches

The category of fully automatic methods rely only on the sensors data available to the robot,
not considering the possibility of interacting with the human. This category can be divided
into three different approaches.

A first set of techniques aim at acquiring features of the environment from laser based
metric maps to support labeling and extract high-level information. For example, in Nüchter
et al. [34], the author present a system able to extract semantic information from 3D models
built from a laser scanner. This work is inspired by previous work on 3D scene analysis in
vision [35], however it is limited to the classification of surface elements, such as ceilings,
floors, and doors. Such a work has been later enhanced by Galindo et al. [36]. In this
work, environmental knowledge is represented by augmenting a topological map with
semantic knowledge provided by the anchoring concept [37]. In particular, the topological
map is extracted using fuzzy morphological operators from an occupancy grid map of the
environment. This map is later enriched with semantic knowledge through a previously
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developed computational framework for anchoring [38].

An alternative second set of techniques uses classification and clustering for automatic
segmentation and labeling of metric maps. For example, the generation of 2D topological
maps from metric maps is described in Goerke and Braun [39]. In this work, the authors
present a framework to build semantic annotated maps by using a classifier based on
AdaBoost on the laser range measurements acquired by a mobile robot. Alternatively,
Brunskill et al. [40] present an online method for generating topological maps from raw
sensor information. Specifically, the authors first describe an algorithm to automatically
decompose a map into submap segments using a graph partitioning technique known as
spectral clustering. Then they show how to train a classifier to recognize graph submaps
from laser signatures. Finally, Friedman et al. [41] propose a technique for mapping the
topological structure of indoor environments based on Voronoi Random Fields.

A third set of techniques for object recognition and place categorization is based on visual
features. For example, Wu et al. [42] describe an approach to Visual Place Categorization
based on sequential processing of images acquired with a conventional video camera. In
particular, the authors present a solution based upon a visual feature known as Census
Transform Histogram. Alternatively, Mozos et al. [43] present a system that transforms
depth and grey scale images taken at each place into histograms of local binary patterns
whose dimensionality is further reduced following a uniform criterion. The histograms are
then combined into a single feature vector which is categorized using a supervised method.
Finally, Hermans et al. [44] propose a 2D-3D label transfer based on Bayesian updates and
dense pairwise 3D Conditional Random Fields. This approach allows to use 2D semantic
segmentations to create a consistent 3D semantic reconstruction of indoor scenes.

Significant progress has been made in fully automated semantic mapping [45], however
even the most recent approaches still lack of robustness and generality. For such a reason,
multiple members of the Artificial Intelligence and Robotics community have proposed to
rely on human interaction to obtain a better semantic representation of the environment.

2.2.2 Human Augmented Mapping

In the human augmented mapping approaches, the user actively supports the robot in
acquiring the required knowledge about the environment. Additionally, the user role is
exploited in grounding symbols to objects that are still autonomously recognized by the
robotic platform. In this case, the human-robot interaction is often unimodal, and typically
achieved through speech.

For example, Zender et al. [46] describe a system able to create conceptual representa-
tions of indoor environments. In this work, a robotic platform owns an a priori knowledge
about spatial concepts and, through them, builds up an internal representation of the envi-
ronment acquired through low-level sensors. The user, throughout the acquisition process,
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supports the robot in place labeling. Alternatively, Pronobis and Jensfelt [47] present a
multi-layered semantic mapping algorithm that combines information about the existence of
objects and semantic properties about the space, such as room size, shape, and appearance.
These properties decouple low-level information from high-level room classification. The
user input, whenever provided, is integrated in the system as additional properties about
existing objects. Moreover, Peltason et al. [48] present a mixed initiative strategy for robotic
learning by interacting with a user in a joint map acquisition process. This work however
considers only rooms, not enabling the system to embed objects in the semantic map. Fi-
nally, Nieto-Granda et al. [49] adopt human augmented mapping based on a multivariate
probabilistic model to associate a spatial region to a semantic label. A user guide supports a
robot in this process, by instructing the robot in selecting the labels.

Few approaches aim at a more advanced form of human-robot collaboration, where the
user actively cooperates with the robot to build a semantic map, not only for place catego-
rization and labeling, but also for object recognition and positioning. Such an interaction is
more complex and requires natural paradigms to avoid a tedious effort for non-expert users.
For this reason, multi-modal interaction is preferred to naturally deal with different types of
information. For example, Kruijff et al. [50] introduce a system to improve the mapping
process by clarification dialogs between human and robot, using natural language. A similar
construction of the representation is also addressed in Hemachandra et al. [51], where
the robot learns the features of the environment through the use of narrated guided tours,
and it builds both the metrical and topological representations of the environment during
the tour. Spatial and semantic information are then associated to the evolving situations
through “events labeling”, that occur during a tour, and are later attached to the nodes of
a Topological Graph. Finally, Randelli et al. [52] propose a rich multi-modal interaction,
including speech, vision, and the use of a pointing device (similarly to Kemp et al. [53]),
enabling for a semantic labeling of environment landmarks that makes the knowledge about
the environment actually usable. However, the authors do not attach any additional semantic
information to the landmarks other than their position.

In Chapter 3 of this thesis, we approach the problem of semantic labeling the environment
through the combined use of a laser pointer and natural language, allowing the robot to learn
incrementally over time, thus realizing a form of on-line semantic mapping. Specifically, in
Section 3 we present a novel and automatic system able to extract from a generic metric map
a Topological Graph of the environment, on top of a symbolic grid-like representation. We
also describe how such an abstract representation can be enriched through the interaction of
the system with a human, later used to solve spatial referring expressions. Compared with
the related work, we not only represent objects as points in the metric map, but we associate
a semantic meaning to them, creating a semantic map that holds multiple information besides
the position of the object (e.g., dimensions, colors, 3D models), which is needed by the
robot for task execution and reasoning.
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2.3 Related Work on Task Representation and Teaching

A second major issue addressed while developing cognitive robots consists of understanding
how to represent the tasks to be executed by the robots. In this section we will briefly
describe the most common methods used for representing and executing robotic tasks. We
then conclude this section giving an overview of the most important related work on task
teaching found in literature.

2.3.1 Task Representation and Execution

Most of the approaches that have been proposed in the past few years for representing and
executing robotic behaviors can be grouped into three broad classes: Finite state automata
(FSA) based approaches, Belief Desire Intention (BDI) approaches, and Petri Net (PN)
based approaches. It is worth noticing that there are a number of approaches that do not fall
into these three categories. Such approaches are mostly programming tools for robotics, with
limited or no underlying formal model. These approaches usually have ad-hoc semantics and
do not support formal analysis, making it difficult to develop robust and effective behaviors.
The resulting tools often take the form of frameworks for ordinary programming languages.
For example, Execution Support Language (ESL) [54] is a language for encoding execution
knowledge in embedded autonomous agents. In particular, this language extends LISP by
defining several constructs commonly used in robotics. In a similar way, the Task Description
Language (TDL) [55] extends C++. TDL programs have hierarchical representations, called
Task Trees, which are composed by asynchronous processes with explicitly represented
constraints, called Tasks. The Reactive Action Packages (RAPs) [56] are instead expressed
in LISP-like syntax and describe concurrent tasks along with execution constrains. RAPs are
an ad-hoc tool for execution of concurrent tasks in robotic applications, which have some
similarities with PNs. In these frameworks no analysis of the resulting behavior is possible
and coding coherent behaviors requires a considerable modeling effort. For these reasons
many approaches have relied on formal models for behavior representation and execution.

FSA-based approaches

Many robot programming languages are based on Finite State Automata. FSA are either
used explicitly, possibly supported by a graphical language, or they are used to provide
the underlying semantic model for the chosen programming language. For example, Col-
bert [57] is a robot programming language that was developed as a component of the Saphira
architecture [58]. Colbert has a syntax that is a subset of ANSI C, while its semantic is based
on FSA. In particular, in this language states correspond to actions while edges are events
associated to conditions. Colbert allows some simple form of concurrency even though,
in this case, the semantics are considerably different from standard FSA semantics and it
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is very hard to ensure coherence in the behaviors. Xabsl [59] is another and more recent
example of an approach based on hierarchical finite state automata. Xabsl is bundled with a
set of language specific tools, which allow for an efficient development of behaviors. The
language has been successfully applied to specify the behaviors of many robotic platforms,
mainly in the domain of RoboCup robot soccer. Also one of the representations for robotic
tasks used in this thesis is also based on Finite State Automata. In particular, Instruction
graphs have been devised to represent tasks as acyclic graphs, which are composed of nodes
representing finite state machines [24]. Finally, it is worth noticing that some methods for
an automated FSA-based plan generation have also been developed (e.g. [60]).

FSA-based approaches stem from the need to implement effective behaviors in real-time
systems [61]. Several other frameworks have been implemented using this approach, proving
the effectiveness of FSA in real world applications. Although modeling behaviors based
on FSAs is a very intuitive task, these approaches have been mostly limited to single-robot
systems due to the lack of expressiveness in modeling concurrency.

BDI-based approaches

The Belief, Desire, Intention framework (BDI) [62] has been proposed as an alternative
to FSA-based robot programming. In a BDI architecture, an agent selects behaviors to be
executed (intentions), based on its goals (desires), and the current representation of the
environment’s state (beliefs). The procedural knowledge is typically encoded in a predefined
library of plans (e.g. [63]). In order to obtain the desired balance between reactivity and goal-
directed behaviors, an agent can commit to the execution of plans and periodically reconsider
them. One key advantage of BDI over FSA-based robot programming is that the designer
does not needs to specify a predefined ordering of basic behaviors, allowing the robot to draw
the executed plans from a potentially very large search space. Several architectures inspired
by the BDI framework have been proposed for modeling Multi-Agent Systems (MAS). Two
notable examples of such architectures that also model collaboration among multiple agents
are STEAM [64] and, more recently, BITE [65]. STEAM is implemented with a focus on
collaborative behaviors, by relying on Cohen and Levesque’s Joint Intentions Theory [66].
In STEAM, agents distributedly monitor the execution of collaborative behaviors (which
are organized in a partial hierarchy of joint intentions), possibly reorganizing the team.
In STEAM, cooperation is implemented through a set of complex domain-independent
rules, incorporated in the architecture to form sophisticated hierarchical team structures.
Instead, the BITE architecture was specifically designed for robotic applications that involve
collaboration and coordination. To manage teamwork, BITE maintains an organization
hierarchy, a task/sub-task behavior graph, and a library of hierarchically linked social
interaction behaviors. Although no explicit methodological guidance to teamwork design is
provided, one of BITE’s strengths consists of the possibility of specifying different types
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of interaction templates (e.g., for synchronization and task allocation). Such templates can
be reused to automate the task selection of individual robots in different scenarios. BITE
is focused on the automation of teamwork, while the design of individual behaviors is not
extensively addressed. As with other systems based on BDI, BITE does not provide formal
validation tools to verify the consistency of the designed behaviors.

PN-based approaches

A solution to robot programming that recently gained interest in the scientific community
is the modeling of robotic behaviors through Petri Nets. In particular, there has been a
considerable effort in modeling MAS through PNs [67], given their capability of representing
concurrent systems and shared resources. PN-based systems offer two main advantages
with respect to FSA [68]: PN languages are a super-set of FSA-based languages, due to
memory and concurrency characteristics. Therefore, the set of modeled roles and behaviors
is potentially richer when using PNs; secondly, PNs allow for automatic analysis and
verification of formal properties on the performance of the modeled systems. Available
tools such as PIPE [69] or TimeNET [70] are able to check PN properties, both through
simulation and Markov Chain analysis.

Due to these facts, PNs have been widely used in literature to model Discrete Event
Systems (DES), such as manufacturing systems [71]. The PN-based modeling of robotic
tasks started with the pioneer work of Wang et al. [72], where PNs were used to implement
the Coordination Level of Saridis, a 3-level hierarchy for intelligent machines. In the past
few years, multiple approaches to plan generation and representation based on PNs have
been proposed, addressing both multi-agent (MAS) and multi-robot systems (MRS).

Action representation using PNs in MAS is proposed, for example, in a work by Celaya
et al. [73]. This model is limited to purely reactive agents: actions are instantaneous,
as they are represented by PN transitions. Instead, places represent the environmental
state of the agent. In a MAS framework, typical issues encountered in embodied agents
such as non-instantaneous actions or uncertain action effects are not specifically addressed.
Interactions among agents have also been modeled by PNs in literature, with a special
focus on the formal modeling of conversations using colored PNs [74]. A substantial
comparative review of the different approaches, including a colored PN model of multi-
agent conversations, where places explicitly represent joint interaction states and messages,
can be found in [75]. Poutakidis et al. [76] introduced interaction protocols, specified using
Agents UML and translated to PNs, to debug agent interaction. The debugger uses the PNs
to monitor conversations and to detect when protocols are not correctly followed by the
agents. While these works provide formal scalable models of interaction, they do not model
actions explicitly, and they are not concerned with commitment issues, which are relevant in
applications where the interaction among agents/robots is cooperative.
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A first group of works using PNs for designing robotic systems develops ad-hoc models
for specific applications rather than providing a formal language for robot programming. For
example, in a work by Sheng and Yang[77], PNs are used to model a multi-robot coordination
algorithm that is based on an auction mechanism to perform environment exploration.
Similarly, [78] shows an agent-based extension of Fuzzy Timed Object-Oriented PNs
(proposed in [79]) for the design of collaborative multi-robot systems for a specific industrial
application. Another example is [80], where the authors report the use of distributed agent-
oriented PNs for the modeling of a Multi-Robot System for playing soccer. These works
focus mainly on the PN that controls the robotic system and on its execution, providing no
systematic method to program such a controller using PNs and/or for the analysis of the
whole system properties.

A second kind of PN-based approaches models robotic systems by representing plans as
PNs in order to analyze their properties and/or to synthesize optimal plans from conditional
ones. In [81], the authors propose an approach for modeling single-robot systems. In
this case, users define several possible plans to carry out a task. Then, a reinforcement
learning algorithm is used to select an optimal solution. This approach also exploits formal
analysis of the PN models allowing for qualitative evaluation (i.e. stability, controllability
and possibility of error recovery). This single-robot approach has been tested in two real
world applications regarding manipulators and mobile robots. A follow-up work is presented
in [74], but in this case the PN model explicitly includes a representation of the environment.
Nevertheless, none of these works provide a formal PN-based language for plan description
and composition. Furthermore, no models of cooperation or coordination are proposed.

A third category of works addresses specification and execution monitoring of plans
for multi-robot systems using PNs. The compilation of plans for multiple robots into PNs
for analysis, execution, and monitoring is proposed by King et al. [82]. In this work, plans
for each single robot are generated either by using a graphical interface or by using some
automated planning method. The operators that are used for the PN representation of the
plans are inspired by the STRIPS [83] planning system. Supervisory control techniques
are applied to the PN controller in order to identify possible conflicts that may arise due to
the presence of shared resources among multiple robots. To deal with unforeseen events,
re-planning is used at run-time, which severely limits the applicability of this approach to
real-rime systems in dynamic environments. Novel supervisory control techniques are also
introduced and applied to simulated and real sensor networks, thereby mixing static and
mobile sensors in [84]. Another formal framework for robotic collaboration based on an
extension to PNs, known as workflow nets, is introduced by Kotb et al. [85] to establish
a protocol among mobile agents/robots based on the task coverage they maintain. PNs
are used to ensure the soundness of the framework and to quantify task performance and
determine goal state reachability. However, none of these works provides a formal PN-based
language for plan description and composition.
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Out of the large body of work on modeling robot and multi-robot behaviors through
PNs, Ziparo et al. [86] proposed Petri Net Plans as a possible systematic approach to robot
behavior programming and verification. In fact, this approach addresses cooperation in
multi-robot teams supported by a well-defined plan specification language.

2.3.2 Task Teaching

The problem of teaching a robot new tasks through the interaction with the user is a new
research topic that has emerged in the last decade. Usually, the tasks to be learnt are
represented as a composition of primitive behaviors that the user can use as background
knowledge to teach the robot. The sequence of such actions is often represented in a graph-
like structure that is encoded in a specifically designed language. For example, Matuszek
et al. [87] and Chen and Mooney [88] use a language called Robot Control Language
(RCL) and compound action specifications, respectively, for representing and executing
route instructions, parsed from natural language commands. These works, although focusing
on understanding and executing the description of a command from the natural language
interaction with a user, do not analyze the problem of learning new actions to be used in
later stage.

Nicolescu and Matarić [89] face such a problem, by presenting a first and simple method
for learning from demonstrations of high level tasks, which are built from a pre-existing
behavior knowledge. In this work, the learning approach is divided in two main phases: first,
the user gives a demonstration of the action to be learnt, while in a second phase the robot
has the opportunity to refine the acquired capabilities, by practicing for a small number of
trials under the teacher’s supervision.

The problem of teaching new tasks to a robot through natural language is also analyzed
in Rybsky et al. [90], where the authors introduce a method for teaching tasks in the form of
directed acyclic graphs, composed of available action primitives. In their work, the task is
verbally described and interpreted through a grammar-free Automatic Speech Recognition
(ASR). As in previous works, the task to be learnt is first demonstrated by the user. Next,
the robot has the possibility of engaging the human in a spoken language dialog to query
any unspecified effects of conditional alternatives. Differently from previous works, the
authors focus the learning process on natural language interaction, also allowing the user to
teach behaviors that involve conditional branches. A similar contribution is also given by
Weitzenfeld et al. [91], where they address the problem of teaching soccer skills to a team
of robots via spoken language. In this latter approach, the authors design a predetermined
set of actions and queries that are associated with a predefined grammar. This grammar
specifies all the possible natural language commands understood by the robot. The proposed
vocabulary includes a set of soccer behaviors (e.g., shoot and pass), and if-then-else control
expressions. An interesting aspect of this framework is the possibility of directly querying
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the robot for its internal state. However, the expressive power of this work is limited, being
unable to handle loops and not allowing the user to correct previously taught actions.

These two contributions have been presented in Meriçli et al. [92], where the authors
describe an enhanced approach that allows the user to teach actions involving loops. Their
speech interface is based on the Google free-form ASR and they represent actions as
Instruction Graphs. This system also enables the user to correct an existing behavior by
letting the robot step through the sequence of actions of a chosen task. This revision approach
works really well for simple behaviours, but may become cumbersome as task complexity
increases.

The above-cited approaches make significant steps forward in extending the language
used for task specification. However, they do not address the problem of teaching a robot
parametric tasks. It has been shown, by strong linguistic theories based on cognitive stud-
ies [33], that when humans talk about an action, they refer to a general structure representing
its underlying concept, which is characterized by a set of arguments participating in it.
Therefore, when teaching a new task to a robot, in order to make the learning process more
intuitive, some authors have suggested referring to general action structures, instead of
teaching instances of more general concepts.

For example, Connell et al. [93] describe a simple approach for learning parametric
actions. By exploiting the Microsoft ASR Engine the authors show how a robot can be
taught how to poke a general object. Open parameters are expressed by using chosen
keywords and they are specified at run-time. However, the proposed method is limited to
a sequence of actions that do not include branches or loops. Moreover, the actions learnt
can be characterized only by a single open parameter, leaving the open question of how to
generalize the method to multiple parameters.

A final example tackling the problem of learning parametric tasks is presented in She et
al. [94]. In this work, the authors describe a three-tier representation that supports both the
conversion of natural language into robot actions and the application of existing planning
algorithms. However, this framework does not allow to represent conditionals and loops and
it does not enable the user to revise previously taught tasks.

Differently from these works, in Chapter 4 of this thesis we have considered three
problems regarding task teaching through natural language interaction. First of all, we
have addressed the problem of allowing a user to teach or specify to a robot new possibly
parametrized actions by combining primitive behaviors. Our system makes a significant step
forward by allowing the user to refer to multiple parameters during the teaching process,
allowing for a rich task specification language, inspired by the Robot Control Language
(RCL) [87]. The Task Description Language, in fact, differently from RCL, allows to
also represent conditionals, parallel actions as well as variables. Moreover, by associating
execution plans in PNP, we rely on an execution semantics that let us capture more expressive
task specifications (e.g., action parallelization). This double representation of the tasks
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allows us to decouple the problem of capturing the wide variety of linguistic expressions
uttered by a user from the problem of defining a clear operational semantics. Additionally,
with such a two-fold representation, we are able to perform task revision in a high-level
fashion.

The second task-teaching problem addressed in this thesis consists of specifying new
tasks involving multi-robot coordination through natural language. Indeed, none of the
approaches described above allow a human to teach multi-robot coordination. In the multi-
agent planning domain, sparse-coordination has been introduced as a method to overcome
planning for large joint state spaces [95]. We apply this same concept to the task teaching
domain to separately instruct the role of each robot in a joint plan represented as Instruction
Graphs [92].

Finally, we have considered an autonomous robot that persists over time interacting with
users and the problem of teaching an additional task to it. We believe that the assumption
that a user would know all the tasks previously taught to the robot does not hold. We hence
investigate the problem of recognizing when a user is teaching a task similar to one it already
knows. We present a graph-based task representation, and contribute algorithms to measure
task similarity, to perform task generalization, and to generate task proposals, as a user
teaches new task actions to an agent. Tasks are accumulated in a library, and the agent can
learn and represent common patterns among tasks.

2.4 Related Work on Qualitative Spatial Reasoning in Robotics

In order to communicate, robots need to be able to understand humans. The conventional nu-
meric approach used in robotics is in fact deeply different from natural language interactions
that occur between people. The former is based on precise metric information about already
well known environments, in which each element is uniquely specified only through its
coordinates. The latter can deal, instead, with ambiguities and spatial uncertainties, which
are solved by referring to purely qualitative properties of objects, or relations among them.
Many difficulties arise when trying to move from a numeric representation of the world to
a qualitative one [96]. Especially if the commands to be executed by the robot are given
through speech.

To this end, a considerable amount of effort of the research community has been
dedicated to the development of qualitative reasoners. Specifically, in literature qualitative
spatial relations have been studied and used in various applications for robotics. For example,
in the “CogX”1 project [97] the spatial relations “in” and “on” are used to define object
targets for indirect object search. Instead, Kunze et al. [98] use information about landmark
objects and their spatial relationship to the target object to show how a searching task can
be improved. Hawes et al. [99] exploite qualitative spatial reasoning to enable a robot to

1http://cogx.eu/
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recognize regions of space that are not simply described by the geometry of the environment,
but also by their function. McClelland et al. [100] use an extension of the double cross
calculus, introduced by [101], to express robot navigation objectives that include spatial
relations in a Mars-like environment. Loutfi et al. [102] look at the same problem in the
context of perceptual anchoring to provide qualitative relations inferred from observed
metric relations.

In general, every qualitative spatial reasoner adopts one or multiple specific frame of
references. In literature, three different frames of reference are usually distinguished: deictic
where the orientation is imposed by the point of view from which the reference object is seen;
extrinsic where external factors impose an orientation on the reference object; and intrinsic,
where the orientation is given by some inherent property of the reference object [103].
Various works have proposed approaches to abstractly represent objects and reason about
their directions and distances, adopting one of the aforementioned category of reference
frames. For example, [104] presents specific systems for composing distances, in addition
to two distinct approaches for describing the direction of a point with respect to another
reference point in an environment: the cone-based approach and the projection-based one.
A generalization of such direction calculi was proposed by [105]. In this paper, the authors
present a method, called star calculus, for representing and reasoning about qualitative
directions of arbitrary granularity. A further approach, both for orientation and distance
reasoning, was instead developed by [101], defining the direction of a located point to a
reference point with respect to a perspective point (the so called double cross calculus), later
augmented with distance information. Finally, other approaches, instead of using points,
approximate spatial regions with geometric primitives, often projecting them to the chosen
reference axis, resulting in a multidimensional Allen’s interval algebra [106]. One of these
approaches is the so called rectangle algebra [107], where all regions are represented as
rectangles whose sides are parallel to the axes determined by the frame of reference.

Qualitative Spatial Reasoning approaches can also be defined as “propositional" or
“pictorial" [108]. The former type uses a natural language description of space that how-
ever cannot easily express structural properties, being focused on formal properties of the
representation itself. The latter, uses a graphical approach to describe space, providing
however a low level representation that is not suitable for fast computations. In his work,
Hernández suggests using a hybrid representation, interfacing these two categories as sep-
arate representations. Inspired by [108] and adopting a similar approach, in Chapter 3
we propose a method for performing qualitative spatial reasoning in robotics, where the
interface between the metric information and the symbolic knowledge is represented by a
grid-based structure automatically built by our robot. On top of the representation, we adopt
a reasoning approach that exploits shapes for distance and orientation qualitative calculus.
Finally, in Chapter 5 we exploit qualitative spatial reasoning to learn particular spatial user
preferences, which are related to tasks to be accomplished by a robot.
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Chapter 3

Acquiring Environmental Knowledge

This work has been published in:

� Living with Robots: Interactive Environmental Knowledge Acquisition. G. Gemignani, R. Capobianco, E. Bas-
tianelli, D. Bloisi, L.Iocchi and D. Nardi. Robotics and Autonomous Systems, RAS 2015.

� Approaching Qualitative Spatial Reasoning About Distances and Directions in Robotics. G. Gemignani, R. Capo-
bianco, and D. Nardi. 14th Conference of the Italian Association for Artificial Intelligence, AI*IA 2015.

� Automatic Extraction of Structural Representations of Environments. R. Capobianco, G. Gemignani, D. Bloisi, D.
Nardi, and L. Iocchi. 13th International Conference on Intelligent Autonomous Systems, IAS 2014.

� On-line Semantic Mapping. E. Bastianelli, D. Bloisi, R. Capobianco, F. Cossu, G. Gemignani, L. Iocchi, and D.
Nardi. 16th International Conference on Advanced Robotics, ICAR 2013.

� Symbiotic Semantic Mapping. G. Gemignani , D. Nardi, D. D. Bloisi, R. Capobianco, and L. Iocchi. International
Symposium on Experimental Robotics, ISER 2014.

� Knowledge-Based Reasoning on Semantic Maps. R. Capobianco, G. Gemignani, D. Nardi, D. Bloisi, and L. Iocchi.
Knowledge Representation and Reasoning in Robotics Symposium at AAAI Spring Symposium, 2014.

� Knowledge Representation for Robots through Human-Robot Interaction. E. Bastianelli, D. Bloisi, R. Capobianco,
G. Gemignani, L. Iocchi, and D. Nardi. Knowledge Representation and Reasoning in Robotics Workshop at 29th
International Conference on Logic Programming, 2013.

When a robot is deployed in an unknown domain, the first type of knowledge that it
needs to acquire is the knowledge about the environment it operates in. In fact, with this type
of knowledge the robot will be able to navigate and ground the commands to the objects and
rooms around it. Because of this fact, in this chapter we present an approach that allows
a robot to incrementally learn the knowledge about the environment, by relying on a rich
multi-modal interaction with the user. We specifically address the problem of acquiring the
knowledge about the environment (i.e., the semantic map) and maintaining it. Compared
with previous work, our approach can be seen as an incremental on-line semantic mapping,
in which a rich and detailed representation of the operative scenario is built with the help of
the user. The resulting integrated representation enables the robot to perform topological
navigation, understanding target locations and the position of objects in the environment.
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The approach described in this paper builds on previous work for off-line construction
of semantic maps [52], based on two main components: A component for Simultaneous
Localization And Mapping (SLAM), that provides a metric map of the environment; A
multi-modal interface that allows the user to point at the elements of the environment and
assign them a semantic role. The novel contributions of this work are the following:

• The representation of the environment, which is automatically extracted from the
metric map and is labelled through user interaction. On this representation different
form of symbolic AI techniques can be applied.

• The process of building and updating the representation, which is done incrementally
during the deployment of a robot through a continuous interactive process;

By exploiting the representation of the environment built through this process, we are able
to support several forms of reasoning, task execution and complex interactions.

The above listed features have been embedded in a prototype system that has been
extensively used over months to validate the proposed approach, in substantially different
environments, and with multiple users. This robotic system is a fully functioning prototype
able to enter an unknown environment and incrementally create a semantic map that supports
the execution of complex tasks in a partially dynamic environment. A semantic mapping
approach similar to the one presented here could be deployed on robots that are currently
entering the market, such as telepresence robots [109]. In this specific scenario, users could
be allowed to give a tour of their homes or offices to the robot, teaching it about relevant
objects or rooms in the environment, possibly in different moments. The knowledge acquired
through this process could then be used to simplify the teleoperation of a robot by allowing
both the remote and the nearby user to command the robot using natural language. For
example, users could just instruct the robot to reach a previously learnt room or object,
without the need to tele-operate it.

In the remainder of this chapter we will first outline the aim, assumptions and contribu-
tions of our work. Then, we will describe the representation of the robot’s knowledge. Next,
we will show how our robots can acquire and maintain environmental knowledge, followed
by an overview of the human-robot interaction mechanisms. Finally, after discussing the
system implementation on four different robots, we will illustrate the experiments that we
have carried out to validate the proposed approach.

3.1 Aim, Assumptions and Contributions of the Work

Semantic Mapping is the process of gathering information about the environment and
creating an abstract representation of it, to support the execution of complex tasks by
robots. In literature, semantic maps have been defined as maps containing, in addition to
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spatial information about the environment, labelings of mapped features to entities of known
classes [3]. Formally, Semantic maps can be defined as a triplet [110]

SM =< R,G, P > (3.1)

where:

• R is the global reference system in which all the elements of the semantic map are
expressed;

• G is a set of geometrical elements obtained as raw sensor data. They are expressed in
the reference frame R and describe spatial information in a mathematical form;

• P is a set of predicates that provide for the semantic interpretation of the environment.

As outlined in the previous chapter, semantic maps can be either created in an automatic
process or through the interaction with the user. The process of semantic mapping can be
formally defined as:

fSM :< M,E >→ SM (3.2)

where M is a given metric map and E = {e1, e2, ..., en} is a set of events that occur while
the robot is exploring the environment. For instance, for automatic semantic mapping
approaches, these events might consist of the recognition of a particular object in the
environment. Instead, for human aided semantic mapping, such events might consist of
different interactions between the robot and the user. These interactions could be realized
through different interfaces, such as natural language, tablets or other forms of human-robot
interaction.

Independently from the type of approach chosen, the systems proposed in literature
are often designed to learn every possible aspect of the environment. Moreover, semantic
mapping is seen as a separate and independent process that needs to be carried out before
task execution. We note that robots do not need to gather a complete knowledge of the
environment to be able to execute tasks. Thus, we propose a shift in perspective, allowing
the user to decide what the robot should and should not know in order to carry out the
assigned tasks. Moreover, we note that not only semantic mapping does not have to be
carried out in a single and independent step, but also that incremental approaches might
better suit semantic mapping techniques that rely on the interaction with the user. Hence,
to enable the user to better aid the robot, we propose an incremental semantic mapping
mechanism based on a multimodal interaction with the user. Formally, incremental semantic
mapping can be defined as

φISM(t) :< M, e(t), SM(t) >→ SM ′ (3.3)

where e(t) is the event occurred at time t, SM(t) is the semantic map built up to time t, and
SM ′ is the new semantic map obtained after applying the function (i.e., after processing
e(t)).
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In order to design a system that supports an incremental semantic mapping, three
fundamental questions need to be addressed: i) How to abstractly represent environmental
knowledge; ii) How to build this representation; iii) How to use the chosen representation to
enable task execution. Solutions to these three questions are present in the literature, but they
have been considered as separate components. One contribution of this work is thus a more
comprehensive evaluation of an integrated system that fully implements an incremental
semantic mapping approach. In the rest of this section, we describe the motivations and
the choices made to develop the proposed solutions to the three issues mentioned above,
with respect to previous work in the literature. Instead, in the next sections we provide
implementation details and discuss additional implementation choices.

3.1.1 Environmental Knowledge Representation

As seen in the previous section, multiple representations have been proposed to represent
environmental knowledge. Our semantic map mostly relates to the one described by Goerke
and Braun [39]. Specifically, we developed a specific four-layered representation of the
environment for the setting considered. In fact, while considering a mobile base that needs
to operate in a human-populated environment, we require the robot to navigate to certain
locations of the environment. We hence build a 2D grid based representation, borrowing the
idea from video-games. Indeed, in video-games, the problem of associating logic, symbols
and behaviors to areas of the game-scene has been studied since a long time [111, 112].
However, differently from the top-down approach used in video-games, where the logic
influences the scene, we propose a bottom-up representation, in which the environment is
strictly conditioning the symbolic layer used by the robot. We device this representation
to fully support a rich semantic mapping process. In fact, instead of limiting our robot
to annotate objects and areas on the metric map, we develop a four-layer representation,
introducing an abstract layer that allows for the use of multiple symbolic AI techniques
(such as planning, symbol grounding, and qualitative spatial reasoning). This representation
is presented in Section 3.2.

3.1.2 Knowledge Acquisition

Multiple approaches have been proposed in literature to acquire a specific representation of
the environment, ranging from fully automatic techniques[45] to human-robot interfaces
based on natural language [113] or tablets [114]. Our semantic mapping process mostly
relates to the one proposed by Diosi et. al. [113]. In this work, the user is exploited to label
areas visited by the robot through natural language. By contrast, while aiming at deploying
our mobile bases in real human-populated environments, we devised a multimodal interface
to enable non-expert users to support the robot in the map acquisition process. Specifically,
in this process, the user guides the robot through vocal commands, teaching it about objects
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and rooms in the environment with the aid of a laser pointer. Through this mechanism, any
non-expert user is able to support our robots, that are in this way able to enter an unknown
environment and incrementally create a specific and rich semantic map. Differently from
other works discussed in literature, we leverage human-robot interaction, by allowing the
user to decide what aspects of the environment the robot should learn. In this process, the
user takes an active role by teaching the robot about objects and areas with the aid of a
laser pointer. As outlined in Section 3.3, this particular interaction has been devised to
be intuitively used by any non-expert users, being them elder or young. Moreover, the
interaction with the user enables the system to partially handle the dynamic aspects of the
environment. In fact, we allow the user to update the semantic map by moving or removing
objects in it.

3.1.3 Knowledge Usage in Common Tasks

In literature, only few works present a fully functioning robotic system able to acquire
a semantic map and use it to carry out tasks assigned by users. One of such approaches
is presented by Zender et. al.[46]. In this work, the authors present a fully functioning
system based on natural language interaction. Differently to the approach described in
their work, we build a richer four-layered representation that is created incrementally and
on-line through human-robot interaction. In our approach, any non-expert user can teach the
robot about objects and rooms of the environment through a simple yet effective interaction
scheme. The representation obtained through this process is then used to support the
execution of complex tasks, issued by the user to the robot through natural language. In fact,
we created a fully functional robotic system relying on the semantic map to accomplish tasks
assigned by different users. Thanks to our representation, we are able to apply symbolic AI
techniques to support the robot during reasoning and planning operations. In particular, by
focussing on tasks that require the robot to reach certain positions, we show how the robot
can ground such commands into the built semantic map and reason about the objects and
rooms described in it. This particular aspect of our prototype is discussed in Section 3.4.

3.1.4 Assumptions

The proposed solution aims at being general and domain independent. However, its im-
plementation is based on some assumptions that are discussed in this subsection. These
assumptions have been devised for the specific implementation that we have developed, but
they do not represent actual limitations of the general approach presented in this work.

We have developed our approach by considering a mobile base that is required to reach
certain locations in the environment as specified by the user through natural language.
Hence, a 2D semantic map of the environment is considered expressive enough to support
task execution. However, the representation could be extended to 3D to support task
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execution for other types of robots. Moreover, we have assumed that users know how to
interact with the robot through the developed interface, having been briefly explained before
through demonstrative examples. This assumption has been verified during the system
evaluation process described in Section 3.6. During such experiments, users only required
a brief training and a couple of examples to fully learn how to interact with the system.
Additionally, we have assumed that the objects pointed by the user through the laser pointer
are distinguishable by either depth or texture and color. Again, such an assumption has been
verified in the case scenarios analyzed during the evaluation of our prototype. Finally, we
have assumed each object in the environment to have an intrinsic front side. Such a front
side is used to establish a common reference frame for the qualitative spatial references used
by the user in the natural language interactions with the robot, as explained in Section 3.4.
We acknowledge that the assumption that each object has an intrinsic front side is a strong
assumption. This assumption has been made observing how users point to objects while
interacting with robots. Such an assumption is used in the grounding of the qualitative
spatial references found in the command given by the user to the robot. The assumption has
been made to establish a common reference frame for the vocal interactions between the
human and the robot. A robust object classification and matching with object models would
help dropping this assumption, but such an issue was not the focus of this work.

3.2 Representation of the Robot’s Knowledge

As previously discussed, how to abstractly represent environmental knowledge is the first
issue that needs to be addressed while designing an incremental semantic mapping approach.
In our robots, environmental knowledge is divided in two layers: (i) the world knowledge,
which encloses the specific knowledge about the environment acquired by the robot; (ii) the
domain knowledge, consisting in a general knowledge about the domain (Figure 3.1).

Figure 3.1. Representation of the robot’s knowledge.

It is important to point out that, while the two layers may resemble the extensional
and intentional components of a classical knowledge base, here they are independent of
each other. In fact, the world knowledge may be inconsistent with the domain knowledge
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(e.g., the robot may have discovered a fridge in the living room rather than or in addition
to the one in the kitchen, while the domain knowledge may state that “fridges are in the
kitchen”), which is generally used to support the action of the robot, only when specific
world knowledge is not available. For example, the robot is only able to reach an object
(e.g., the fridge in the living room) if it has been previously discovered; else, if there is no
specific knowledge about the position of the fridge, the system will query a general domain
knowledge base to find out its possible location (e.g., the kitchen). To better explain this
point, the fact that a fridge has been found, for example, in the living room and that the
robot knows through human dialog that a particular kitchen has no fridges (in contrast with
the conceptual knowledge base that states that “fridges are located in kitchens") does not
negatively affect any reasoning of the robot when a fridge is discovered elsewhere.

In this chapter, we will use the term Concept to refer to a set of symbols used in the
conceptual KB and to denote general concepts (i.e., abstraction of objects or locations). For
example, Fridge and Kitchen are concepts in the general domain knowledge base. The
term Label will be used, instead, to refer to a set of symbols that indicate specific instances
of objects or locations. For example, fridge1 could be a label denoting a particular fridge,
while kitchen could be a label denoting a particular kitchen. In the notation used in this
chapter, concept names will be capitalized, while labels will have all lower-case letters,
typically followed by a digit. Finally, the associations between labels and concepts will
be denoted as label 7→ Concept. For example, fridge1 7→ Fridge denotes that the label
fridge1 is an instance of Fridge (i.e., fridge1 is a fridge). Next, we will describe in detail
how the aforementioned knowledge structures, pictured in Figure 3.1, are subdivided.

3.2.1 Domain Knowledge

In previous work, domain knowledge has typically been characterized as a conceptual knowl-
edge base, representing a hierarchy of concepts, including their properties and relations,
a priori asserted as representative of any environment. The conceptual knowledge base
usually contains a taxonomy of the concepts involved in the environment tied by an is-a
relation, as well as their properties and relations [36, 115]. These concepts are used in the
world knowledge to characterize the specific instances of the environment, as previously
explained. In our representation, three top-most classes have been considered: Areas, Struc-
tural Elements, and Objects. Areas denote places in the environment (corridors, rooms, etc.),
Structural Elements are entities that form the environment and that topologically connect
areas (windows, doors, etc.), while Objects are elements in the environment not related to
its structure and located within areas (printers, tables, etc.). A snapshot of a portion of the
conceptual knowledge base used in the experiments is reported in Figure 3.2.

Finally, in the conceptual KB we have included synonyms. It is possible, in fact, to refer
to the same object with different natural language expressions (e.g., referring to a “plug”
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Figure 3.2. A fragment of the conceptual knowledge base used in the experiments.

also with the word “socket”). Moreover, we use the structure of the taxonomy during the
natural language interactions with a user, by looking at a more specific or more generic
concept (e.g., it is possible to refer to a “book cabinet” with the word “cabinet” and vice
versa).

3.2.2 World Knowledge

A semantic map is typically characterized as a low-level representation of the map (i.e., a
grid), that is labeled with symbols. Such symbols denote, for example, the area correspond-
ing to a room (e.g., a corridor) or the presence of objects and structural elements of the
environment. Our representation builds on a similar structure, supporting however a much
more detailed description, based on the interaction and hints provided by the user. Such an
environment representation is called World Knowledge and it is composed by the following
elements:

Metric map The metric map is represented as an occupancy grid generated by a SLAM
method. This map has usually a fine discretization and it is used for low-level robot tasks,
such as localization and navigation. In Figure 3.3 a metric map with a resolution of 5 cm
generated is shown in the background of the image, where black pixels represent occupied
cells and grey pixels resemble empty spaces.

Semantic Grid Map The Semantic Grid Map is represented as a discretization of the
environment in cells of variable size. Each cell represents a portion of a physical area
and it is an abstraction of locations that are not distinguishable from the point of view
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of robotic high-level behaviors. The Semantic Grid Map also includes a connectivity
relation Connect ⊆ Cell × Cell, that describes the connectivity between adjacent cells.
In Figure 3.3, the Semantic Grid Map contains multiple cells that are delimited by borders
in different colors. Each color corresponds to an area reported in the legend to the right.
Connectivity relations between cells are not explicitly shown in Figure 3.3, but they can be
derived by looking at adjacent cells.

Topological Graph The Topological Graph is a graph whose nodes are locations associ-
ated to cells in the Semantic Grid Map and edges are connections between these locations.
In Figure 3.3, the Topological Graph is depicted as a graph connecting oval nodes. Dark-
colored nodes correspond to static locations, while light-colored nodes correspond to variable
locations, which are associated to the main areas of the environment. The static locations
denote specific positions that are of interest for the robot tasks (e.g., the position to enter
in a room), while the variable locations are used to denote areas, where the instantiation
of the position for a navigation behavior is executed at run-time, depending on the current
status of the robot and on its goals. Since the Topological Graph is used by the robot for
navigation purposes, the edges also contain the specific navigation behavior that is required
for the robot to move from one location to another. In this way, the Topological Graph is
also used to generate appropriate sequences of behaviors to achieve the robot’s navigation
goals. For example, by knowing that there is a door that must be traversed to go from a point
to another, a particular behavior must be adopted by the robot that will be included in the
Topological Graph.

Figure 3.3. An example of world knowledge.

Finally, our specific representation of the environment is populated with Instance
signatures. The instance signatures are represented as a data base of structured data, where
each instance has a unique label (l ∈ Label), an associated concept (C ∈ Concept) such
that l 7→ C, and a set of properties expressed as attribute-value pairs. Additionally, every
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label is associated to a set of cells (cells = {c1, c2, ..., cn}) and topological nodes (nodes =
{n1, n2, ..., nk}) associated to them. For example, the green cells labeled with f1 (top-right
corner of the kitchen area) are mapped with the labels {f1, kitchen}, that are associated
with the concepts Fridge and Kitchen, i.e. f1 7→ Fridge and kitchen 7→ Kitchen,
respectively. Thus, the corresponding area is characterized as being occupied by a fridge
and as belonging to the kitchen. Additionally, f1 can have the following properties: position
= < x, y, θ >, color = white, open = false.

3.3 Acquisition of the Robot’s Knowledge

Once we are able to represent environmental knowledge, we need to address the problem of
how to acquire such representation. In our robots, the semantic map is built by using two
different modalities: an initialization phase and the on-line incremental extension of the
initial knowledge.

The initialization phase aims at creating an initial representation of the robot’s knowledge.
Such a process is a standard approach used by the majority of the semantic mapping methods
found in literature. During this phase we have allowed the user to specify the objects enclosed
in the environment while acquiring the metric map. The initialization phase can be divided
into two steps: the Metric Map and Instance Signatures Construction and the Semantic Grid
Map and Topological Graph Generation. During the first step, a 2D metric map is generated
through a graph-based SLAM approach [116, 117] and the initial set of instance signatures
is created. In the second step, a grid-based topological representation, called Semantic Grid
Map, is obtained by using the 2D metric map and a graph, called Topological Graph, needed
by the robot to perform high level behaviors is built by processing the instance signatures
and the Semantic Grid Map.

The on-line modality can be used to enrich the initial knowledge including additional
objects and additional properties. It is worth noting that different users can add knowledge
to the system, thus the system has to deal with the possible addition of multiple tags for the
same object. The details about the two acquisition modalities are given in the following.

3.3.1 Metric Map and Instance Signatures Construction

In the first step of the initialization phase, the robot is used to navigate the environment
in order to create a 2D metric map and to register the positions of the different objects of
interest. As already described, during the guided tour of the environment, the user can tag a
specific object by using a commercial laser pointer (Figure 3.4a). While the object is pointed
through the laser, the user has to name the object, so that the Vocal Interface module can
register the semantic label that will be assigned to it [52].

The Dot Detection module is responsible for detecting the laser dot by using the RGBD



3.3 Acquisition of the Robot’s Knowledge 31

Figure 3.4. Object tagging. a) The object is tagged with the laser pointer. b) The color image from
the RGBD sensor is used to locate the laser dot. c) The 3D point cloud is extracted. d) The
planes not containing the laser dot are discarded. e) The dot is used as seed point to segment the
tagged object.

data. By exploiting the odometry data to detect when the robot is not moving, a set of image
samples is collected over 3 seconds in order to generate a background model of the captured
scene by means of a multimodal statistical approach [118]. After 3 seconds, the robot
communicates to the user that it is ready for acquiring the tag and a background subtraction
process is carried out over the current RGB image (see Figure 3.4b), thus obtaining a
foreground mask. The background subtraction step allows for filtering out possible false
positives (e.g., due to illumination sources coming from windows or ceiling lighting). The
foreground pixels are then converted into the HSV color space to search for the specific
color values of the light dot generated by the laser. To further refine the results, the depth
information is used to discard all the points that are above a certain height (2.00 meters in
our case) or that are too far from the camera (3.00 meters). The output of the Dot Detection
module is the image coordinates (i, j) of the laser dot in the RGB image.

Once the dot is found, the Object Pose Estimation module is responsible for finding
the 2D position x, y and the bearing θ of the tagged element in the metric map [119]. The
object pose in global coordinates (x, y, θ) is calculated by taking into account the normal
corresponding to the surface of the segmented object in the reference frame of the RGBD
sensor and then applying a first transformation to the reference frame of the robot and
a second transformation to the reference frame of the map (this is given by a standard
self-localization module, i.e., ROS-AMCL).

The coordinates of the laser dot are also used by the Object Segmentation module that
aims at segmenting the pointed object in order to extract its width (W ), height (H), and
depth (D) as well as its color properties. The laser dot is then projected onto the 3D point
cloud of the scene (Figure 3.4c). All the planes in the scene are extracted from the 3D point
cloud and those that do not contain the dot are discarded (Figure 3.4d). The remaining points
are analyzed to segment the shape of the object of interest by using the laser dot as a seed
point for the expansion and depth discontinuities as stopping criterion (Figure 3.4e).

The color properties are obtained by analyzing the set of pixels belonging to the seg-
mented object. In Figure 3.5 an example of color information extraction is reported. The
set of points in the laser scan corresponding to the tagged object are detected by extracting
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the neighbor points around the projection of the laser dot onto the laser scan (Figure 3.5b).
In order to segment the tagged object, the point cloud is rotated of an angle equal to π

2 − θ
around the axis orthogonal to the floor. In this way, all the objects are treated as being
acquired by the same angle of view, thus allowing for a normalization of the point cloud
of the tagged object. The final poses of the tagged objects are stored as instance signatures
together with the corresponding properties (color and size).

Figure 3.5. Extracting color information from a tagged object. a) The RGB image. b) The laser scan
received from the laser range finder. The detected object is highlighted in red. c) The segmented
point cloud. d) The color mask corresponding to the blue color.

3.3.2 Semantic Grid Map and Topological Graph Generation

While there are tools and methodologies for building metric maps, and, to some extent,
topological graphs, all the knowledge about the environment must usually be provided to
the robot in a suitable format by an expert. This is not satisfactory if symbolic and semantic
knowledge has to be acquired incrementally or if this process has to be performed on top
of a metric map. In fact, neither the occupancy grid, nor the topological graph provide a
good representation for adding semantic knowledge. The occupancy grid, in fact, since it
has a fine discretization, which is good for a rich description of structural details, does not
allow to be easily translated into a symbolic representation, needed for a high-level form of
spatial reasoning. The topological graph is suitable for representing the connectivity of the
environment with respect to a set of symbols associated to it, but its structure can become
very nested and complex, leading to difficulties in physically locating the areas of interest.
Moreover, updating the topological graph can become a challenging task, especially if the
structure of the environment in the map can change due to the continuous update of the
representation.

Given the above considerations, an intermediate abstraction layer, strictly linked to the
metric map is indeed useful for both acquiring semantic knowledge and enabling the robot
to build a topological graph on top of the actual structure of the building, thus keeping in the
high-level description a direct connection with the physical world. Such an abstraction layer
can be inserted in a processing chain from the metric map to the symbolic representation of
knowledge about the environment, independently both from the mapping methods and from
the knowledge acquisition techniques. The Semantic Grid Map and the Topological Graph
are generated automatically in the second step of the initialization phase.
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Figure 3.6. Semantic Grid Map and Topological Graph generation. The metric map is enriched
with semantic information to obtain the Semantic Grid Map. The instance signatures and the
Semantic Grid Map are used to create a Topological Graph.

The Semantic Grid Map contains a high-level description about the regions, structural
elements, and objects contained in the environment. It is generated using both the instance
signatures and the 2D metric map. The process to generate the Semantic Grid Map is carried
out by the modules reported in Figure 3.6 and briefly described below (for details see the
article by Capobianco et al. [120]).

The Grid Computation module is used to generate a rasterization of the 2D metric map
into a grid-based topological representation called the grid map (not to be confused with
the Semantic Grid Map, which is a grid map enriched with semantic information). The
operation is accomplished by applying the Hough Transform at different resolution levels to
identify the lines passing through the walls. In this way, it is possible to find all the main
walls in the map. The cells of the grid have different size with respect to the amount of
relevant features in the considered area (e.g., the cells in the corridor are wider then the
ones in the offices). In detail, the cells have been chosen to be variable-sized since we want
the grid to be built on the basis of the walls and to be consistent with the structure of the
environment, which could not be achieved using a fixed-size grid. The cells have a size
between xmin · ymin and 2xmin · 2ymin, where xmin and ymin are calculated by extending the
lines generated through the wall detection to the whole image and computing the minimum
horizontal and vertical distances. Of course, such a discretization could affect the object
localization for small objects, but in general this error is admissible. Specifically, we use the
center of the grid cell as a reference for the localization of the objects since it is acceptable
both from a qualitative representation and task execution point of view.

The Object Positioning module is responsible for placing the representations of the
objects and structural elements tagged in the environment into the grid map. The objects’
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pose, shape and size, memorized in the instance signature data base in the previous step, are
used to label the cells in the grid map. The output is an object map, containing labeled cells
representing tagged objects.

The Area Segmentation module is applied to further enrich the object map, by auto-
matically labeling the different areas of the environment. The object map is divided into
different rooms by using the watershed algorithm [121]. The segmentation algorithm is
enhanced by considering the tagged objects and structural elements previously included
in the environment. For example, the knowledge about the position of doors is used to
separate different areas of the environment. The output of the area segmentation module is a
Semantic Grid Map, containing labeled cells representing tagged objects and areas of the
environment.

The Topological Graph Generation module allows to complete the initialization phase
by creating a Topological Graph. Such a graph embodies the information needed to the
robot for navigating and acting in the environment and it is generated by exploiting the
knowledge contained both in the Semantic Grid Map and in the instance signatures.

3.3.3 On-line Knowledge Acquisition

When the initialization phase is terminated, the robot is ready to incrementally extend
its initial knowledge by adding new objects to the Semantic Grid Map. Similarly to the
initialization phase, the on-line acquisition is also achieved by tagging objects with the
laser pointer (note that we still focus only on static objects). The system operates as for
the previous phase, but at the moment of the insertion in the knowledge base, the system
updates the symbolic representation accordingly: the Semantic Grid Map and the instance
signatures are modified in order to reflect the new situation generated by the addition of a
novel object, as discussed in the article by Bastianelli et al. [16].

However, since the system is used incrementally and possibly multiple users can interact
with it, some difficulties can arise in the maintenance of the knowledge. For example, a user
may try to tag an object that is already present in the knowledge representation or he may
want to tag an object that is in a cell already occupied by another object. In the first case, the
system can detect the problem, since the Semantic Grid Map contains a cell labeled with the
same name used by the current user, and it can avoid to add a duplicate label in the Semantic
Grid Map. An example for the second case can occur if we want to tag a plug that is located
under an already tagged white-board. In this case, since the names of the two objects are
different, the system allows to insert two labels in a single cell, leaving to an interaction
with the user the choice of keeping or deleting the existing object.

During the on-line acquisition phase, the system can recognize objects already present in
the knowledge representation. Considering again a plug as an example, if a user points to it
in position (x1, y1) and a different plug in position (x2, y2) has been previously memorized,
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the system tries to recognize the object without the explicit grounding by the user.

Figure 3.7. The system tries to recognize the class of an object if another instance of the same class
has been already memorized by using the SURF features as descriptors.

In Figure 3.7 two plugs are tagged. Since the Object Segmentation module transforms
each segmented object in the same angle of view, the recognition task is simplified. The two
objects are therefore matched by using the SURF features as descriptors and by exploiting
the FLANN algorithm to find the correct correspondences.

3.4 Robot Behavior using the knowledge base

The knowledge acquired with the previously described method is used for knowledge
maintenance and task execution. These two actions, as well as all the other behaviors needed
by the robot to act in the environment, have been modeled using the Petri Net Plans (PNP)
formalism [86], based on Petri Nets [68].

3.4.1 Petri Nets

Petri Nets are directed, weighted, and bipartite graphs. A Petri Net has two types of nodes
connected by directed weighted arcs, which have a default weight of one. The first type
of nodes are called places and may contain zero or more tokens (Fig. 3.8a and 3.8c). The
number of tokens in each place is defined as marking, and denotes the state of the system.
The second type of nodes are instead called transitions and they represent the events modeled
by the system (Fig. 3.8b).

Figure 3.8. Nodes of a Petri Net

Mathematically, a Petri Net can be defined as a tuple PN = 〈P, T, F,W,M0〉, where:

• P = {p1, p2, . . . , pm} is a finite set of places.

• T = {t1, t2, . . . , tn} is a finite set of transitions.
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• F ⊆ (P × T ) ∪ (T × P ) is a set of edges.

• W : F → N+ is a weight function where w(ns, nd) denotes the weight
of the edge connecting ns with nd.

• M0 : P → N+ is the initial marking.

• P ∪ T 6= ∅ and P ∩ T = ∅

Transitions can produce or destroy tokens from places according to the rules that define
the dynamic behaviour of the Petri Net. In other words, this behaviour defines how the state
of the net changes over time and it is defined by the following firing rule:

1. A transition t is enabled if each input place pi is marked with at least w(pi, t) tokens.

2. If an enabled transition t fires, w(pi, t) tokens are removed for each parent place pi
and w(t, po) are added to each output place po.

3.4.2 Petri Net Plans

From Petri Nets, Ziparo et al. [86] have defined Petri Net Plans (PNPs). PNPs are particular
Petri Nets whose operational semantics are enriched with the use of conditions, which are
verified at run-time by querying an external knowledge base. No restriction is imposed on
the knowledge base, which is supposed to be updated by other modules according to the
agent’s perceptions.

PNPs are composed by basic actions that can be combined through a set of possible
operators in order to express complex execution paradigms. The basic actions of a PNP are
ordinary actions (Fig. 3.9a), which represent a durative action, and sensing actions (Fig.
3.9b), which represent procedures whose outcomes depend on one or more conditions to be
checked in the knowledge base, similarly to if-statements.

Figure 3.9. Ordinary and sensing actions in a Petri Net Plan

These basic actions can be seen as a specific concatenation of places and transitions of a
Petri Net. Each element of an action represents a specific aspect:

• Input places (pi) model the initial configurations of the network before the action has
been executed.
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• Execution places (pe) model the configurations during which the action is executed.
These places are also used to create hierarchical plans by calling a sub-plan while
visiting this place.

• Output places (po) model the final configurations of the network achieved after the
execution of the action.

• Start transitions (ts) model the events that trigger the execution of the action.

• End transitions (te) model the events that trigger the stop of the action. In a sensing
action there is a true (tet) and false (tef

) end transition that fire depending on the
outcome of the query made to the knowledge base.

These basic actions can be composed using a set of possible operators for single and
multi-agent plans. Here we informally introduce some of the single-agent operators, referring
the reader to the original paper [86] for a formal and complete definition of the available
operators:

• Sequence. A sequence is obtained by merging two places of different PNPs. It can be
applied to any place except for the execution ones, as shown in Figure 3.10.

• Interrupt. Interrupts connect the execution place of an action (or sub-plan) to a non-
execution place of another network. It causes the temporary termination of the action
(or sub-plan) under anomalous conditions, as shown in Figure 3.11. Interrupts are
often used to repeat a portion of a plan that did not realize its post-conditions in order
to implement while-loops.

• Fork and Join. Each token in a Petri Net Plan can be thought of as a thread in execution.
Through Fork and Join, threads can be created and synchronized. An example of a
fork followed by a join is shown in Figure 3.12.

Places in the PNP can be used to denote states of execution of the plan, while transitions
represent conditions or events that allow for state changes. PNP supports a hierarchical
representation, thus execution tokens in one PNP can refer both to atomic actions and to
other PNPs (also called sub-PNPs) that can be executed in parallel. Moreover, the presence
of markers in a place is used to define a context and these contexts are then used for taking
contextual decisions. For example, contexts are used for loading the proper grammar at a
specific phase of the plan.

In our system we have implemented a simple plan that, based on the input given by
the speech component, activates one of the eleven possible actions (Turn, LookAt, Follow,
Memorize, Forget, Update, Home, GoToPlace, GetCloser, TellObjectKnown, RecognizeOb-
ject). When such an action ends or is interrupted, the system waits for another command
given by the user. In the rest of this section, we present two examples of such PNP actions
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Figure 3.10. The sequence operator

Figure 3.11. The interrupt operator

Figure 3.12. The fork and join operators

in order to show how the knowledge can be acquired and used (see PNP1 for a more detailed
description).

3.4.3 Knowledge Base Maintenance

The knowledge acquired by the robot is used, in a first place, for maintaining the knowledge
base. In particular, three operations of memorizing, removing, and better specifying the
objects found in the environment have been implemented in the system. Figure 3.13 shows
a simplified PNP used for memorizing the objects located in the environment through the
interaction with the user.

In this plan three Say, one AddObject, and one AskForHelp actions are used to
reach the goal. The Say actions represent a communication with the user through the
text to speech system. AddObject, is the action used to store all the information of the

1http://pnp.dis.uniroma1.it



3.4 Robot Behavior using the knowledge base 39

Figure 3.13. Simplified version of the Memorize PNP used in the experiments.

object tagged in the semantic map, while AskForHelp represents the action responsible
of resolving the possible conflicts generated by the addition of a new object to the semantic
map. The conditions used in this plan are the following:

1. DotDetected: the user has pointed to the object that needs to be memorized and
the laser pointer has been correctly recognized;

2. UserLabel: the user has uttered the label for the object to be memorized;

3. Yes, No: the user has confirmed or not the label understood by the robot for the
object to be memorized;

4. KB_OK, KB_Conflict: possible answers obtained from the query posed to the
knowledge base(KB_OK: the place/object tagged by the user does not conflict with
anything previously memorized; KB_Conflict: the place/object tagged by the
user conflicts with something previously memorized and the user help is therefore
required).

Finally, there are two context places (CCategorize, CConfirm), that are used
to activate contextual behaviors. Specifically, CCategorize and CConfirm activate
special grammars to parse user sentences, representing the label of the object tagged and the
feedback to the robot confirmation request, respectively. When a new object is tagged, the
knowledge base is queried for other objects located in the same position of the new element.
If one or more objects are found, the system tries to resolve the problem by comparing the
labels of the new element with those given to the existing ones. If such a label is found to
be a synonym or related by a more generic/specific relation to any of the existing ones, the
system automatically resolves the conflict by acknowledging the user of the presence of the
existing element and by updating the label attached to the object if the new label is more
specific than the known one. An example of execution of this plan is given in the following
table.
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User “Memorize.”
Robot “I am ready to memorize an object.”

The user points at the object until an auditory feedback is received.

User “This is the book cabinet.”
Robot “I already know that a cabinet is here. Now I know that this is a book cabinet."

The three basic operations (i.e., memorize, remove, and specify) have also been com-
bined in order to create more complex behaviors. For example, when the system cannot
resolve the conflict, the user is notified that one or more objects are known to be in the same
position of the newly tagged one and she/he is asked whether the new element should be
added or substituted to any of the previous ones. An example of such an interaction is given
in the following table.

User “Memorize.”
Robot “I am ready to memorize an object.”

The user points at the object until an auditory feedback is received.

User “This is the fire extinguisher.”
Robot “I know that a socket is also here. Should I keep it in my memory?"
User “No."
Robot “Ok, I have removed the socket and I have memorized the fire extinguisher."

3.4.4 Task Execution

The second case in which the knowledge acquired by the robot is used is task execution. In
this case, the knowledge is used for executing the task of moving in front of a specific object
by interacting with a user. A simplified version of the GoToPlace sub-PNP relative to such a
behavior is given in Figure 3.14.

Figure 3.14. Simplified version of the GoToPlace PNP used in the experiments.
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Specifically, the plan uses one GoTo and two Say actions to reach the goal state. The
GoTo is the action used to move the robot to a particular place while the Say action
represents a communication with the user through the text to speech system. The conditions
in this plan are:

1. UserRequest: The user has asked the robot to go to a place/object (the name of
the place is stored in the robot’s memory during the execution of this plan);

2. KB_OK, KB_NONE, KB_MULTI: Possible answers obtained from the query posed to
the knowledge base (KB_OK when the place/object given by the user is unique in the
knowledge base and its position in the environment is known; KB_NONE when there
is no place/object with such name in the knowledge base; KB_MULTI when there are
multiple places/objects with the same name in the knowledge base);

3. UserSpecification_ANY, UserSpecification_DETAILS: The user has
specified which place/object by either answering that any place/object is fine or by
giving a more detailed description that is the subject of a new query to the knowledge
base.

Finally, there is one context place (CWhichPlace) that is used to activate contextual
behaviors. In particular, such a context place activates a special grammar used to parse user
sentences representing a specification of a place or an object.

The specification of a place or an object can be given either by using spatial relations
or synonyms and more general/specific concepts. While the latter specifications can be
implemented by embedding a vocabulary in the robot knowledge base, for spatial relations
a dedicated spatial reasoner has been devised. In particular, three vicinity relations (near,
next to, and nearest), their three opposite relations (far, not next to, and furthest) and four
orientations (behind, in front, on the right, and on the left) have been implemented. By
defining CLoc and CRef the set of cells belonging to the Semantic Grid Map that include
a portion of the objects Loc and Ref respectively, we say that Loc has a vicinity relation
with Ref if and only if:

d(centroid(CLoc), centroid(CRef )) < t

where d is the euclidean distance, t is a threshold constant, and centroid(x) is a function
that takes a set of cells x in input and returns the coordinates of its centroid in the metric map
coordinate system. By specifying a threshold constant for both the relations near and next
to, tnear and tnext respectively, we therefore define the six distance relations (the nearest
attribute is computed by finding the object that minimizes the above defined distance). In
order to define the orientation relations, as in the work by hernandez [108], we exploited
the “intrinsic front side" of the objects, identified with the normal of the surface tagged by
the user during the learning phase previously described. Specifically, we have used such a
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normal to define a forward orientation, later deriving, by rotating clock-wise, respectively the
concept of left, backwards, and right regions. By defining the general concept of directions,
we adopted the cone-based approach [122] to explicate the four directional relations, starting
from the centroid of the reference object. By defining ARefR the area corresponding to a
region in the direction R with respect to the reference object Ref (e.g., Acabinetright is the area
on the right of the cabinet), in order for Loc to belong to that particular area, we require that:

centroid(CLoc) ∈ ARefR

where, again, the centroid(x) is as above defined. Two examples of execution of this plan
are given in the following tables.

User “Go to the socket.”
Robot “There are many sockets in the environment. Which one do you mean?”
User “The one close to the emergency door.”
Robot “OK. I am going to the socket.”

User “Go to the socket.”
Robot “There are many sockets in the environment. Which one do you mean?”
User “Any.”
Robot “OK. I am going to the closest socket.”

When the location to be reached is retrieved from the KB and the user is acknowledged with
a feedback sentence similar to the ones described above, the system checks whether the
robot is located inside the same room where the target is placed. If so, the robot navigates
directly to the target without using the Topological Graph, while if not, the system searches
the graph for the shortest path to reach the entrance of the Area containing the target cell
and, from there, it behaves as in the previous case.

3.5 System Description

Our approach has been implemented on a mobile base derived from Segway (Figure 3.15a),
on a Videre Design platform (Figure 3.15b), on a Turtlebot (Figure 3.15c), and on a
MARRtino, a mobile base built by our students (Figure 3.15d). The standard sensor
setting of each mobile base includes a laser range finder for localization and navigation
and one (or two) RGBD sensor(s) for the laser dot detection and the object segmentation.
The robots carry two additional components, the robot software component and the speech
component, which are respectively run by a laptop placed on the robot and by a tablet that
can be either held by the user or placed on the robotic platform.
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Figure 3.15. Robots on which our system has been deployed. a) Mobile base derived from Segway.
b) Videre Design platform. c) Turtlebot. d) MARRtino, a mobile base built by our students.

3.5.1 Robot Software Component

The robot software, including both core robotic functionalities and the system for acquiring
and handling the knowledge about the environment, is implemented on ROS2.

The implementation of navigation relies on standard ROS modules for path planning
and obstacle avoidance, that have been specialized for ad hoc behaviors, such as “person
following”, as well as navigation behaviors (e.g., for entering doors), associated with
different edges of the topological plan enclosed in the world knowledge.

In order to perform the person following behavior, the detection of the person to be
followed is realized by integrating information coming from the laser range finder and the
RGBD camera. The poses of these two sensors are calibrated in order to obtain a merged
set of range data to process. The detection is based on filtering the current range data with
information coming from the localization module and, in particular, the distance map. In this
way, it is possible to filter out the range data that are associated to objects that are in the map
(low values in the distance map). The remaining data points are assumed to belong to objects
not in the map and in particular to the user interacting with the robot. After a clustering and
the application of an additional filter on the metric size of the obtained clusters, the closest
cluster which is compatible with the typical size of a person is used as target detection for
the person following behavior. The procedure is not completely robust to the presence of
multiple people in the scene and it may generate false positives when objects that have a
similar size of a human (e.g., a plant) appear as new objects in the scene. However, since
this work does not focus on people perception and tracking, this simple implementation is
robust enough for supporting the semantic mapping task.

The robot can acquire two types of perception data: RGBD data coming from a Kinect
sensor and 2D data coming from a laser range finder. The two sources are used to recognize
the object that the user wants to insert into the semantic map. In order to do so, the user can
point the object through a commercial laser pointer (see Figure 3.15) and provide, through
the vocal interface, semantic information about it. A ROS node listening for the data coming
from the Kinect has been created for the detection of the laser dot, while a second node is

2http://www.ros.org
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responsible for gathering the 3D points belonging to the tagged object. The second node uses
odometry information coming from the robotic platform, in order to calculate the bearing θ
of the tagged object. The software for image processing, including the detection of the laser
dot, the pose estimation of the tagged object with respect to the position of the robot, the
extraction of visual features from the scene, and the matching between objects have been
developed using OpenCV and PCL-Point Cloud Library functions.

Multiple ROS services have also been adopted to implement the representation and use
of the knowledge about the environment. Such services can be logically divided into two
main components:

• The world representation component, that includes the knowledge representing the
environment and two main processes: one for the construction and update of the
knowledge base and the other one for answering queries needed to check the conditions
in PNPs, based on the knowledge about the environment. The representation of
symbolic knowledge, including the Semantic Grid Map, the Topological Graph, the
Taxonomy of conceptual knowledge, as well as the algorithms for solving spatial
referring expressions are embedded in a SWI-Prolog module encapsulated within a
ROS service.

• The behavior and dialog maintenance component, that drives the robot as well as the
dialog with the user, has been implemented using our library for Petri Nets Plans3.

3.5.2 Speech Component

The implemented speech system is a modular component that runs on a dedicated hardware
(currently a tablet, a PC or a portable phone). For this component, we have tested different
settings (hand-held/omnidirectional microphone, push-to-talk button, wake-up word), that
can be easily deployed on each of the four mobile bases. The speech processing takes place
on the dedicated device and is divided into two modules: the software dedicated to sending
to the robot the result of the interpretation of the user utterances and the software used as a
Text-To-Speech engine to vocalize the robot replies.

The speech processing is based on the implementation developed through Speaky for
Robot4 [123]. The language model is specified by defining grammars that drive the recog-
nition process: by attaching a proper semantic output to each grammar rule, we get a
representation of the linguistic semantics of a recognized utterance. This representation is
based on the frame concept, a conceptual structure representing a situation in the world, typ-
ically an action, inspired by the notion defined in the Frame Semantics linguistic theory [33].
The general meaning expressed by each frame can be enriched by semantic arguments,
called frame elements, that are part of the sentence and provide additional specification of

3http://pnp.dis.uniroma1.it
4http://labrococo.dis.uniroma1.it/?q=s4r
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the action. The output of the recognition process is then converted to a parse tree containing
syntactic and semantic information, that is used to instantiate the associated frame, as it is
typically done to represent user commands [124]. As an example, the command “go to the
Phd room” will be mapped to the MOTION frame, while the sub-phrase “to the Phd room”
will fill the specific frame element GOAL representing the destination of the MOTION.

The lexical level of the grammars (i.e., the part of the grammar that represents the
vocabulary) is organized according to the structure of the conceptual knowledge base. First
of all, the words are categorized according to some super-classes (Areas, Objects and
Structural Elements). Inside each of these super-classes, the different words are grouped into
more specific classes, and subdivided according to their functionalities. In this approach,
words like “table" belong to the Furniture class, while words like “cabinet" will belong
both to the Furniture class and the Container_furniture subclass. This organization of the
lexical level is useful to specify the set of words that can fill a certain frame element of a
frame, according to their semantic function (e.g., for the frame ENTERING the frame element
GOAL, i.e. the place where the subject is entering, can be filled only by the words belonging
to the Area class, that are rooms, or to the Structural Element class, such as doors). In this
work, we are assuming that the names of the objects and locations not present in the map
are known to the speech recognition module and that they can be understood when the user
refers to them. However, different speech processing chains that rely on general purpose
Automatic Speech Recognition systems (ASRs) and automatic algorithms for querying the
web could be used to overcome the need of such an a priori knowledge [125].

A request by the user may start a dialog that aims at acquiring additional information
when the grounding of an object or a location can not be resolved by the system. During this
process, the user can guide the system with voice commands such as “turn right", “follow
me" or “go to the Phd room". For the references related to objects in the environment,
when the robot is in front of the new targets to be grounded, the user can point to the
object and tell the robot the natural language reference for it, as “this is the emergency
door". A specific CATEGORIZATION frame is then associated with the description command
during the grammar decoding phase. In the same way, the CATEGORY frame element,
which represents the description or the specification of the subject, is instantiated with the
referenced object (i.e., “the emergency door”). The lexical representation expressed in the
CATEGORY frame element is then linked to the pointed position in the space by using the
information obtained through the dot detection system.

The sentences that are recognized by the system belong to different categories including
commands and object descriptions. In order to have a better performance of the ASR in the
implementation of the dialog, the grammars are loaded dynamically, contextually with the
robot’s behavior. The dialog maintenance is part of the robot software and it is embedded
within the Petri Net Plans module, which is used to specify the robot’s behaviors.
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3.6 Evaluation

The main goal of the experiments reported in this section is to show the feasibility, the
effectiveness, and the robustness of the proposed approach for on-line acquisition of knowl-
edge through human interaction. In order to validate our approach, we have carried out
experiments both on single components and on the whole system. These experiments have
been conducted by executing the robot behaviors described in the previous section, across
different settings, including different robots, several users, and two very different kinds
of environments: a home environment and our Department. Multiple videos showing the
execution of these behaviors can be found in the dedicated web page5.

3.6.1 System Component Evaluation

The Semantic Grid Map generation process, the object segmentation module, the speech
recognition unit, and the spatial-reasoner are the four main components of our system. Such
components have been quantitatively evaluated in order to measure the performance of our
implementation.

Semantic Grid Map Generation In order to evaluate the Semantic Grid Map representa-
tion, two experiments have been conducted. In the first experiment the publicly available
Radish Data Set6 has been used with the purpose of evaluating, in terms of compactness
of the representation, the effectiveness of the proposed discretization, when dealing both
with regular and irregular indoor environments. In particular, six 2D metric maps7, obtained
from different SLAM methods, have been processed to extract the Semantic Grid Map on a
number of different occupancy grids. In addition, four maps generated by our robots have
been processed, for a total of ten different environments. Qualitative results are shown in
Figure 3.16. A very good correspondence between the real environment and the structured
information within the Semantic Grid Map is achieved. Even if the Semantic Grid Map
generation process has been developed for dealing with ordinary (regular) buildings, it
provides good results also in environments with irregular edges (e.g., see the last row of
Figure 3.16). Quantitative data about the reduction in terms of the size of the representation
allowed by our approach are reported in Table 3.1. The results underline that the Semantic
Grid Map representation is more compact than the corresponding bitmap (about two orders
of magnitude, depending on the complexity of the map).

When objects are located in the Semantic Grid Map, errors in their positions and
dimensions are introduced because of the discretization of this map. A second experiment

5www.dis.uniroma1.it/~gemignani/Articles/LivingWithRobots.html
6http://radish.sourceforge.net/index.php
7The following maps have been used: albert-b-laser, ap_hill_07b, ubremen-cartesium, intel_lab, belgioioso

and a portion of hospital_floorplan_fort_sam_houston

www.dis.uniroma1.it/~gemignani/Articles/LivingWithRobots.html
http://radish.sourceforge.net/index.php
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Figure 3.16. Representation obtained for two different maps from the Radish Data Set.

was thus performed in order to evaluate such errors. To this end, we considered 11 instances
of 3 different categories of objects in our department. To avoid the errors introduced in
the perception layer, we measured the ground truth of objects’ position and size and we
evaluated their error when represented in the Semantic Grid Map. By overlapping the object
representations from the Semantic Grid Map (SGM) onto the metric map (i.e., drawing the
occupied cells on the metric map), we compared their area and size in terms of pixels with
respect to a ground truth map (GT), thus measuring the error introduced by the use of the
Semantic Grid Map. In detail, we measured the errors for the width (W ), the depth (D), and
for the full area of each object:

eW =
∣∣WSGM −WGT

∣∣
WGT

eD =
∣∣DSGM −DGT

∣∣
DGT

earea =
∣∣areaSGM − areaGT ∣∣

areaGT

The results obtained (reported in Table 3.2) naturally depend on the size of the considered
object and on the granularity of the discretization in the portion of the map where the object
is located. For example, the representation error for a cabinet, which is big in size and can
be easily detected from the metric map, is usually small since it is extracted by the wall
detection algorithm. This is true especially on the W dimension, since the metric map of our
department is regular. The error in the case of a recycle bin is instead higher, since four cells
are required to fully represent such an object. Indeed, even if a single cell representation
would decrease the error, it would not be suitable for safe navigation. In the case of the fire
extinguisher, the error strictly depends on the granularity of the grid, since this object always
requires one single cell to be represented. In general, even if the error for the object area
can reach values around 3, losing precision is still acceptable from the point of view of the
task execution, since after reaching the desired location on the semantic map, an accurate
localization of the objects is performed through perception. Overall, the results show that
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Table 3.1. Comparison between the
pixels of each processed metric
map and the cells of the corre-
sponding Semantic Grid Map.

Map Pixels Cells
BelgioiosoCastle 768 792 11 600
dis-B1 1 080 700 10 290
dis-B1-part 501 840 7372
dis-Basement 992 785 13 455
FortAPHill 534 520 7878
Freiburg 335 248 4794
HospitalPart 30 000 285
Intel 336 399 4473
scheggia 92 984 1116
UBremen 831 264 10 962

Table 3.2. Error evaluation for the size and the area of
the objects in the Semantic Grid Map with respect
to ground truth values.

Object Cells eW eD earea

Cabinet1 3 0.31 0.1 0.18
Cabinet2 3 0.31 0.1 0.18
Cabinet3 6 0.32 0.3 0.71
Cabinet4 6 0.32 0.5 0.97
Cabinet5 3 0.31 0.1 0.18
FireExt.1 1 0.8 0.4 1.52
FireExt.2 1 1.4 0.8 3.32
FireExt.3 1 1.2 0.8 2.96
RecycleBin1 4 0.89 0.88 2.54
RecycleBin2 4 0.34 0.13 0.5
RecycleBin3 4 0.89 1.13 3.01
RecycleBin4 4 0.45 1.13 2.06

the proposed representation lightens the computational load in exchange for a small error
that does not affect task execution.

Object Segmentation A quantitative evaluation for the object segmentation process has
been carried out by considering the same objects used for the Semantic Grid Map evaluation.
In particular, we have evaluated the accuracy of our approach at segmenting multiple
instances of three different classes of objects in our knowledge base (i.e., fire extinguishers,
cabinets, and recycle bins) as shown in Figure 3.17.

Table 3.3 reports the results of the image segmentation process in terms of Detection
Rate (DR) and False Alarm Rate (FAR). DR and FAR are computed as follows:

DR = TP

TP + FN
FAR = FP

TP + FP

where TP are the true positives, i.e., correctly segmented pixels, FN are the false negatives,
i.e., the number of object points detected as background, and FP are the false positives, i.e.,
the number of background points detected as object points. Lower values for DR are mainly
caused by holes in the depth data, especially along the borders of the objects. Higher values
for FAR are mainly caused by a slight misalignment between the RGB image and the depth
map provided by the sensor. The highest FAR value is obtained in the case of RecycleBin3
since part of a cabinet alongside the tagged recycle bin is incorrectly segmented as part of it.

Since the final goal of our framework is to acquire knowledge for generating an accurate
semantic map, we evaluate also the precision of our segmentation method at extracting the
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Figure 3.17. Three classes of objects have been selected for the quantitative evaluation of the object
segmentation module: fire extinguisher, cabinet, and recycle bin. In the first column the images
of the objects are reported, while the manually obtained ground truth images for the silhouettes
of the objects are shown in the second column. The third column contains the results of the
segmentation process.

width (W size) of the tagged objects. The results are reported in Table 4. The error eW is
calculated as follows:

eW =
∣∣detectedW −GTW ∣∣

GTW

where detectedW is the width detected by our segmentation algorithm and GTW is the
ground truth width. The analysis of the results suggests that the proposed approach can
recover the W size of the tagged objects with an acceptable error eW . The highest eW value
is caused by the erroneously segmented RecycleBin3. It is worth noting that in such a case,
the system memorizes the tagged object. However, since the W value for RecycleBin3 is
not coherent with the object properties stored in the conceptual KB, a clarification dialog
has been implemented to flag this error.

Speech Recognition The speech component has been designed mainly as a support for
the Augmented Mapping task experiment described in this chapter. For this part, we aimed
at having a robust system, covering a controlled language with a low error rate in terms of
transcription ability, instead of trying to deal with a wide range of linguistic phenomena. We
evaluated the performance of the Speech component considering two aspects: the quality of
the transcription of user utterances and the command interpretation process.

The first has been evaluated in terms of the Word Error Rate (WER) [126]. We measured
a WER of 0.258 on the transcription of commands uttered during the experiments. Since
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Table 3.3. Error for the Object Seg-
mentation module in terms of
Detection Rate (DR) and False
Alarm Rate (FAR).

Object DR FAR
Cabinet1 0.865 0.055
Cabinet2 0.946 0.010
Cabinet3 0.622 0.000
Cabinet4 0.841 0.037
Cabinet5 0.911 0.022

FireExt.1 0.621 0.151
FireExt.2 0.677 0.151
FireExt.3 0.795 0.280

RecycleBin1 0.892 0.195
RecycleBin2 0.839 0.119
RecycleBin3 0.900 0.502
RecycleBin4 0.628 0.022

Table 3.4. Error in extracting the width (W size) of the
tagged object.

Object Ground Truth Detected Error
Cabinet1

100 cm

96.56 cm 0.034
Cabinet2 76.03 cm 0.239
Cabinet3 79.16 cm 0.208
Cabinet4 138.20 cm 0.382
Cabinet5 80.50 cm 0.195

FireExt.1
15 cm

11.29 cm 0.247
FireExt.2 11.72 cm 0.218
FireExt.3 15.71 cm 0.047

RecycleBin1

38 cm

44.30 cm 0.165
RecycleBin2 29.25 cm 0.230
RecycleBin3 79.30 cm 1.086
RecycleBin4 34.85 cm 0.082

we use the Microsoft Speech Recognition Engine, the WER is actually measuring the
performance of an off-the-shelf component. Note that this factor biases the outcome of the
final interpretation, since a wrong transcription affects the recognition of the frame and the
related arguments.

The evaluation of the performance of the interpretation process is inspired by a typical
measurement specific of the Semantic Role Labeling task [127]. Semantic parsing, that is
the process of assigning a frame structure to a sentence representing its meaning in terms
of semantic frames, is subdivided into three phases. First, the Frame Prediction task, that
is the ability of the system to recognize a frame associated with the command expressed
in an utterance. Second, Boundary Detection is the task of recognizing the span of the
arguments of a frame in a sentence. Finally, Argument Classification is the task that aims
to assign a label to each recognized argument span from the Boundary Detection step. In
our case, the interpretation of a recognized utterance in terms of frames and frame elements
is produced simultaneously during the recognition process. The implemented grammars
present a verb-arguments structure, where each verb is linked to the corresponding frame, as
well as the arguments to the relative frame elements. Each recognized chunk of a sentence
is then tagged as a frame element, preventing the possibility of having not labeled chunks.
According to the nature of this semantic parsing procedure, we decided to define two
measures inspired by the methodology deriving from the Semantic Role Labeling, the Action
Recognition and the Full Command Recognition. The first measures the ability of the system
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of assigning the right frame (thus understanding the right action) to a spoken command,
exactly as it is done for the Frame Prediction task in the Semantic Role Labeling. The second
refers to the capability of recognizing the arguments of a given action, and corresponds to
the measure of the Argument Classification task. Table 3.5 reports the performance of these
two measures in terms of Precision (P), Recall (R) and F1-Measure (F1), obtained from a
dataset of 250 interactions.

Table 3.5. Performance of the Speech Recognition component.

Metric P R F1
Action Recognition 89.47 80.63 84.82
Full Command Recognition 75.43 67.98 71.51

Spatial Reasoning To demonstrate the improvements that qualitative spatial reasoning
can determine in grounding commands, as well as the effectiveness of our approach on a
real robot, two different kinds of experiments have been carried out.

The purpose of the first experiment was to evaluate the impact of a qualitative spatial
reasoner on an agent whose amount of knowledge continuously grows, as well as the
influence of the already available knowledge on such a reasoning. Such an evaluation has
been carried out considering the number of unambiguous and ambiguous commands (i.e.,
commands referring to more than one object with a specific spatial property) grounded
by the agent. Indeed, when full knowledge about the environment is available, grounding
ambiguous commands would mostly lead to the execution of an action that does not match the
user expectation, while all the unambiguous commands are likely to be correctly grounded.
We therefore analyzed first the impact of the presence or absence of the qualitative spatial
reasoner (QSR) and then the impact of the amount of knowledge available to the agent.
In detail, we first asked 26 students to provide a set of three commands containing spatial
relations between objects, by looking at pictures of the test environment. Then, from the 78
acquired commands, we extracted two types of tasks: 28 ambiguous and 50 unambiguous.
By gradually adding knowledge about the objects inside the knowledge base of the agent,
we therefore measured how many commands were grounded. We repeated the experiment
for both categories of commands, with or without the qualitative spatial reasoner. Since the
curves depend on the order of the objects inserted in the knowledge base, the experiment
has been performed five times in order to obtain its average trend (Figure 3.18). In case
the QSR was not present (red curve), only the objects in the environment, whose category
has a unique member, were correctly identified. For example, since we had two cabinets
in the test environment, there was no way of distinguish them without exploiting spatial
relations. By comparing the two curves in the image, it can be noticed that the presence of
the QSR does not greatly affect their trend when a little amount of knowledge is available,
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due to the absence of exploitable spatial relations between objects. On the other hand this is
not true when substantial environmental information is available. Note that when complete
knowledge about the relevant elements of the environment is known by the robot, the number
of grounded commands, as expected, is equal to the number of unambiguous phrases (50
commands) present in the adopted set of commands.

The second experiment performed is aimed at understanding the limitations of the
proposed approach. To this end, we measured the agreement between the user’s expectations
and the grounding performed by the robot. In particular, we first produced a Semantic Grid
Map by driving the robot on a tour of the environment and tagging 23 objects within an office
environment, as well as the doors and the functional areas in it. Then, we asked 10 different
non-expert users to assign 10 distinct tasks to the robot, additionally asking them to evaluate
whether the robot correctly grounded their commands, thus meeting their expectations.
The commands have been directly acquired through a Graphic User Interface, in order to
avoid possible errors due to misunderstandings from the speech recognition system. In
detail, the users had the possibility to choose the action to be executed by specifying the
located object, the reference object and one of the 10 spatial relations implemented in
our reasoner. Table 3.6 shows that approximately 80% of the given commands have been
correctly grounded. The remaining 20% of the wrongly grounded commands where due to
two different phenomena: (i) the command given was ambiguous, requiring other properties,
in addition to direction and distance, to identify the object; (ii) the users did not behave
coherently during the interaction with the robot, by varying their concept of vicinity or by
adopting different reference frames.

Figure 3.18. Mean number of grounded com-
mands with respect to the number of objects
known in the environment, added in a random
order.

Table 3.6. Number of correctly and wrongly
grounded commands with respect to the ex-
pectations of the users.

User Correct Wrong
1st 7 3
2nd 8 2
3rd 10 0
4th 6 4
5th 8 2
6th 8 2
7th 10 0
8th 7 3
9th 9 1
10th 8 2
Total 81 19
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Table 3.7. Result obtained from the test performed on the whole system. The position of the tagged
objects is compared with the one obtained from a manually generated ground truth by calculating
the distance between the two points.

Distance Thresholds Average Percentage Experts Non-Experts
≤ 0.1m 18% 20% 16%
≤ 0.2m 42% 37% 47%
≤ 0.3m 48% 46% 50%
≤ 0.4m 76% 72% 80%
≤ 0.5m 88% 94% 82%

3.6.2 Whole-system Evaluation

In this last set of experiments, our goal was to evaluate the whole system in a real environment
during a typical task executed by the robot. For this reason, we deployed our robot in an
office environment and asked both expert and non-expert users to drive the robot around
using the vocal interface and to tag various objects present in the environment. To test the
robustness of our system in a noisy environment, we carried out a data collection during a
public opening of our department asking 10 visitors, in addition to all of the authors of this
work (for a total of 16 users), to take part in the following experiment. The robot started
with no knowledge about the objects enclosed in the environment and each user, after being
explained for a minute the commands understood by the robot, had to drive, using the vocal
interface, the mobile platform in front of a desired object and teach the robot its position and
name. Having memorized different objects, the user had to ask the robot to move in front
of them in order to demonstrate that the learning process had been carried out successfully.
In this experiment all the users have been able to successfully memorize an object. After
collecting the data, we calculated the distance between the position of the centroid of the
learned objects with the one belonging to a ground truth manually created. The result of
such a comparison is shown in Table 3.7. From the table it can be seen that almost 90%
of the objects were placed with an error less than 50 cm. The remaining objects where
placed instead at a distance between 50 cm and 1.5 m, due to errors resulting from the object
segmentation component, and the Semantic Grid Map Generator. It can also be noticed that
the precision does not vary between the expert and non-expert users, thus confirming that
this system does not require a specific training to be used. Overall, the evaluation of the
performance shows that the system can effectively acquire knowledge about the environment,
allowing for the representation in the semantic map of a wide variety of elements. Finally,
the results of the final experiment with the users show that the approximations that have been
introduced in the representation do not affect the execution of the task, thus providing some
evidence of a good balance between abstraction and accuracy reached in our representation.
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3.7 Chapter Summary and Discussion

In this chapter we have presented a new approach for acquiring and representing the knowl-
edge about arbitrary indoor environments. The knowledge about the environment that is
gathered with the help of the user is turned by the system into a layered representation (i.e.,
a semantic map), which allows for high-level interaction with the user. In the development
of our representation, we focused on the acquisition of knowledge about the specific en-
vironment, so that the behaviors of the robot over time are supported by grounded facts,
rather than by general world knowledge. Additionally, we have shown how human-robot
collaboration can play a key role, being the robot instructed by a user through a simple
interaction. The resulting semantic map provides a compact and expressive representation,
which is used to handle dialogs about the objects and locations in the environment and to
ground complex user commands referring to spatial locations. Such maps can be used, for
example, to drive the actions of a remote robot through speech, operating in a home or office
environment.

The implemented system has been tested with four different robots, in different environ-
ments and with many users, showing a good performance over extended periods of time.
In particular, the system has been experimentally evaluated as a whole, as well as in all its
main components. The results of the experiments show that, despite some approximations
in the construction of the representation, the knowledge acquisition process is robust and
easy to be performed by non-expert users and on different robotic platforms.

While the implemented prototype shows the capabilities that can be achieved through
the integration of AI techniques (NLP, KR, spatial reasoning, perception, etc.), the imple-
mentation can be improved in multiple aspects and several research topics may be addressed.
First of all, a better integration with state-of-the-art techniques for object detection and clas-
sification may enable a more proactive role of the system in building the map, by matching
both acquired models of objects and general model of object categories. A better integration
of the domain knowledge with external resources, possibly including the web, may also
be exploited to support the learning capabilities of the system in grounding the objects of
the environment to new concepts and to their linguistic counterparts. Moreover, we plan
to improve the whole system to address more cognitive issues related to the construction
of the semantic map. Among them, the characterization of changes in the environments by
analyzing the evolution of the knowledge base over time and the ability to properly handle
multiple instances of objects in the same category. Finally, we are considering the extension
of the Semantic Grid Map to 3D, which would bring about a new set of spatial relations
among the objects.
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Chapter 4

Acquiring Procedural Knowledge

In the previous chapter we have seen how a robot can incrementally acquire environmental
knowledge through the interaction with the user, in order to adapt to the environment it is
deployed in. Once a robot is able to acquire such knowledge, it should also be able to use it
to carry out tasks given by the user. However, such tasks often vary from user to user and
cannot be foreseen at design time. To this end, in this chapter we address the problem of
learning from the users new complex tasks. With the term complex we refer to tasks that
are compositions of predefined robotic action primitives (i.e., atomic behaviors that are not
further decomposable in terms of simple actions). Once learnt, during execution a complex
task will instantiate a specific plan and, for this reason, in the rest of the section, we will
refer to complex learned actions either as tasks or plans, while their composing actions will
be called primitives or primitive actions.

In the rest of this chapter we first discuss an approach for allowing non-expert users to
teach parametric tasks to a robot. With the term parametric we refer to tasks that contain
references to abstract concepts that are instantiated at execution time. An example of such
type of task could be represented by the plan of “bringing an object to a location”. In this
case, the concepts “object” and “location” are understood by the robot in an abstract way.
Such concepts are instantiated during execution with one of the instances of the semantic
map acquired with the approach previously shown. Next, we discuss an alternative method
for learning parametric tasks. By analyzing a library of previously taught tasks, we show
how it is possible to extract common parametric tasks. These parametric tasks are then
used for supporting the user in the teaching process. Finally, we consider the problem of
teaching multiple coordinating robots. By leveraging the concept of sparse-coordination, we
show how we can enable a user to teach to multiple robots new tasks that require them to
coordinate.
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4.1 Parametric Task Teaching

This work has been published in:

� Teaching Robots Parametrized Executable Plans Through Spoken Interaction. G. Gemignani, E. Bastinaelli, and D.
Nardi. 14th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015.

In this section, we attempt to tackle some challenges associated to task teaching, by present-
ing a novel approach for learning, through the interaction with the user, task descriptions
that are defined as a combination of primitive actions. To achieve this goal, we decouple the
problem of learning the semantic meaning of the commands from the problem of executing
them. Specifically, we first use a grammar-based approach to acquire the description of
the actions, which are represented through a novel language representation designed to
capture the multiple expressions of the language used during the interactions. This language
representation is then converted into plans readily executable by the robot. The action learnt
by the robot in this way can involve sequences of actions, conditional branches and iterations
that can be characterized by multiple open parameters specified at run-time. The two main
contributions of this work are the following:

• A novel approach for learning the syntactic structure of the taught actions, represented
as parametric tasks that can be instantiated at run-time;

• A new language representation, called Task Description Language, mapped into the
Petri Net Plans (PNP) formalism, which has been described in the previous chapter.
This mapping allows us to give a clear execution semantics and to express complex
execution paradigms, such as parallel actions.

In addition, we show how to revise the tasks learned, allowing the user to refer to their
composing actions in a high-level fashion.

In this section, we first describe in detail the proposed approach and how it has been
deployed on a service robot. Next, we present a set of tests designed to validate our method
and a brief discussion of the results obtained.

4.1.1 Approach

Our approach allows to dynamically teach a robot new complex task descriptions through
user interactions. Unlike previous works, in our approach the task learned by a robot take as
input arguments that are not statically associated to a specific instance, e.g., the red book,
but they are filled with possible semantic categories, e.g., object. For example, a possible
implementation of a bringing task could be represented by the general concept of bringing
an object to a location. In each task, the arguments can assume different values every time a
command is given to the robot, e.g. “bring the book to the office”.
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Our learning process is based on a spoken dialog with a user that incrementally ex-
plains to the robot how the task is composed in terms of primitives. To this end, the Task
Description Language (TDL) has been designed in order to give a structure to the task
descriptions, enabling for the use of different patterns of execution of the involved primitives,
e.g. conditional branches or while loops. The interaction with the user is mainly based on
spoken inputs, however the proposed approach also allows for the use of examples to drive
the learning process (e.g., it is possible to tell the robot “go to the location for example the
office" to check if the robot correctly executes the command). Moreover, we also investigate
the possibility of using dialogs to update a previously learned task by removing, inserting and
replacing some of its parts with new TDL constructs. Generally, our interactive and action
learning approach takes place in three consecutive phases: Processing verbal instructions;
Generating executable plans; Updating plans. Figure 4.1 reports the interaction scheme of
the first two processes that we designed.

Figure 4.1. Interaction scheme designed for processing verbal instruction and for generating
executable plans.

Processing verbal instructions

The first step in learning new actions through user interaction consists of acquiring a natural
language description of the command and its interpretation, associated with a structured
representation. Specifically, taking inspiration from the Robotic Control Language proposed
in [87], we designed a Task Description Language (TDL), to create a first representation of
the tasks to be learnt.

TDL is a high-level representation for complex procedure specifications, described using
natural language. TDL acts as a bridge between the instructions as expressed by humans
and the final plan of the robot, and it is specified by the grammar reported in Table 4.1. In
TDL, tasks are described as a composition of procedural components that can be primitive
actions or structural elements describing different execution patterns, that embed other TDL
constructs in a recursive way. Starting from the capabilities of our robotic platforms, we
first define a set of primitive actions so that every complex TDL structure is expressed as a
function of them. Below, we list the primitives we defined to test our approach:

• goTo: the action of going from a point to another point in the space. It takes one
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Table 4.1. The constructs defined in Task Description Language.

TDL Form
Condition <Condition>:[Parameter List]

Primitive Action
<Action>:[Parameter List]
<Variable>=<Action>:[Parameter List]

Sequence of Actions do-sequentially <TDL1 > ... <TDLn >

Conditional If <Condition> then <TDL1 > else <TDL2 >

Counting Loop do-n-times <TDL> <Integer>
Do-until Loop do <TDL> until <Condition>

parameter: the destination.

• follow: the action of following someone or something in front of the robot, in an
open-loop fashion.

• takePicture: the action of taking a snapshot of the scene, acquired through some
visual sensing device. It outputs the name of the picture taken, which can be stored in
a variable (@picture) to be recalled in the dialogue by the user.

• say: tells the robot to call the Text-to-Speech service to synthesize a string into voice.
Its parameter is the sentence to be said.

• sendEmail: the action of sending an email to an address with a content. Its two
arguments are: the content of the mail and the address where to send it.

• pickUp: the action of picking up an object. It takes the object to be picked up as a
parameter.

• drop: the action of releasing an object.

Additionally, we defined two conditions to be checked in the if-then-else and
do-until constructs:

• in: to check whether the robot is located in a particular location or not.

• isPerceived: to verify whether an object is perceived by the robot or not. If
the anyone parameter is passed as an argument, a person detector functionality is
activated.

The list of parameters (see Table 4.1) passed to the primitives can either hold variables,
denoted with an @ character followed by a string, or instances, represented by strings. Such
lists are used to instantiate the arguments of the primitive actions, and are bounded to the
parameters of the task being described. This feature is fundamental for teaching the robot
general concepts of actions, where arguments are only referenced as possible semantic
categories and not as specific instances of them.



4.1 Parametric Task Teaching 59

For example, consider the case of teaching a robot the general concept of the bringing
action. We can assume that, for a particular instance, this action will require two arguments:
an object to be brought and a location where the object must be brought. This general
conceptual structure of the action is instantiated at the beginning of the learning interaction,
after the user tells the robot a phrase like “I’ll teach you how to bring an object to a location”.
Consequently, two variables are created (i.e. @object and @location) for the current
task. During the explanation, the user can refer to these variables as arguments of prompted
primitive actions. Let us assume that the task corresponding to the bringing action is
composed by the sequence of four primitives: a goTo action needed to reach the object
to be brought, followed by a pickUp action, then another goTo action to reach the final
location and, finally, a drop action to release the object. When referring to a primitive
that requires one or more arguments, it is possible to bind them with the task variables, e.g.
goTo:[@location]. The final TDL structure for this particular instance of the bringing
action therefore will be:

( do− sequentially

( goTo : [@object] )

( pickUp : [@object] )

( goTo : [@location] )

( drop : [@object] ) ).

In order to acquire such a description of the action, we propose an interaction scheme
that is based on a spoken dialog with a user that prompts step by step the elements composing
the final TDL. The process is structured in three steps:

• Automatic Speech Recognition to translate the user vocal input into text.

• Interpretation, where the transcribed input is translated into a TDL construct.

• Decision about how to proceed in the dialog flow (e.g. asking for confirmation about
the learned action or possible clarification about the input received).

The ASR phase is realized using a grammar-based engine that allows us to implement
specific grammars for describing the TDL. The grammars drive the recognition process:
by attaching a proper semantic output to each grammar rule, we obtain a representation
of the linguistic semantics of a recognized utterance, which is later translated to a specific
TDL. This representation is based on the frame concept inspired by the notion defined
in the Frame Semantics linguistic theory [33]. The general meaning expressed by each
frame can be enriched by semantic arguments that are part of the sentence and provide
additional meaning to the action. As an example, the command “go to the office” will be
mapped to the MOTION frame, while the sub-phrase “to the office” will fill the specific
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frame element GOAL representing the destination of the MOTION. The representation will
then be translated in the following TDL structure:

( goTo : [office] ).

The adopted ASR provides also for the possibility of using special grammar rules that trigger
a free-form dictation ASR engine. We use this feature to recognize the names of new tasks
that are not predefined in the grammar, as well as messages to be uttered when performing
the say primitive.

The process of learning new tasks does not only consist of converting spoken instructions
to TDL and consequently instantiating a new plan. In fact, the acquisition of knowledge
about new tasks also involves the learning of new linguistic forms in order to verbally
recall them. To this end, after a new plan has been correctly built, the ASR grammars are
augmented with new syntactic-semantic structures corresponding to the learned task, e.g.
bring the @object to the @location for the task “bring the object to the location".

Generating Executable Plans

Once the spoken description of the task given by the user has been converted in its corre-
sponding TDL structure, it is processed to obtain an executable plan described with the Petri
Net Plans (PNP) formalism [86]. PNP, is a plan-representation framework based on Petri
Nets, which includes a rich set of features suitable for expressing executable actions: non-
instantaneous actions, sensing and conditional actions, action failures, concurrent actions,
interrupts, and action synchronization in a multi-agent context are among the aspects that
can be described by such a formalism. This versatility allows us to represent and precisely
characterize within PNP not only the multiple details of the plan uttered by the user, but
also every action and dialog between the user and the robot. Moreover, with this additional
representation we are able to decouple the problem of understanding user utterances from
the issue of executing a task on the robot.

Starting from the TDL structure representing the plan extracted from the utterances of
the user, in order to obtain an executable plan, a tree structure is created by recursively
decomposing it in its elementary parts. Such tree is composed of nodes labeled with
the TDL forms contained in the input TDL and by edges representing the constituency
relation (see Figure 4.2). Once the tree has been generated, starting from its leaves, each
TDL construct is replaced by the corresponding PNP structure. Figure 4.3 shows the PNP
structure corresponding to each TDL constructs shown in Figure 4.1. By querying a KB
that holds the information about the primitive actions (i.e., their name and their input and
output semantic categories), each component of the PNP structures is then renamed to form
a correct parametric plan. When dealing with a parametric primitive action, during execution
the system is able to query the KB in order to bind the variable used in the obtained PNP
with an instance of the semantic map. By converting the TDL structure into a specific PNP,
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Figure 4.2. Tree structure created from an example input TDL.

an exact mapping between natural language and executable PNPs is obtained, thus providing
a suitable execution semantics.

Once the PNP representation of the action has been created, an update message is sent
to the speech recognition module and to the KB to flag that the new plan has been learnt.
Specifically, this message is used to store in the KB the number of variables used by the
learnt plan, their name and the associated TDL structure needed during the update phase, as
described in the following section.

Updating Plans

A feature of our approach consists of allowing the user to correct parts of the taught plan as
desired. The work by [92] is the only example of plan revision in a task teaching framework:
the authors propose a task correction mode, during which the robot describes the action
sequence and asks, at each step, whether the user wants to replace a primitive action with
another one. We propose a way for referring to each primitive action composing the newly
learnt plan in a high-level fashion, allowing the user to add, replace or delete a particular
action in a task.

To update a previously taught task, the user can verbally select it and subsequently refer
to its primitive actions. By naming the action that needs to be modified, the desired operation,
and the optional parameters needed, the plan is modified accordingly. For example, assuming
that the user needs to replace a say action with a goTo action, this can be achieved by
telling the robot: “I want you to perform the go to location action instead of the say action".
When multiple actions of the same kind are instead present in a plan to be modified, the
user can distinguish them by referring to their parameters (e.g., “the go to location") and/or
by specifying the ordinal number with which they appear in the TDL structure (e.g., “the
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(a) Primitive Action (b) Sequence of Actions

(c) Conditional (d) Counting Loop

(e) Do-until Loop

Figure 4.3. Examples of PNP structures for each TDL construct.

second go to"). Once the updating command has been acquired by the robot, the old plan
TDL structure is retrieved from the KB. If the command univocally identifies an operation
in the plan (i.e., there are not any ambiguities in the given command) the old TDL structure
is modified accordingly, otherwise a clarification dialogue is started by the robot. Finally,
the new TDL is translated into its corresponding PNP to enable its execution on the robot.

4.1.2 System Deployment

Our goal in this section is to demonstrate the effectiveness of the approach, showing that
our teaching methodology can be adopted to learn high-level parametric plans, additionally
allowing to represent multiple execution paradigms expressed using natural language. To
this end, we deployed our system on a robotic platform to show the advantage of using an
intermediate representation, namely TDL, together with the PNP formalism to model the
learning, revision and execution processes. To ground the semantic categories expressed
in TDL, a semantic map built with the aid of the user has also been given to the robot [16].
The proposed approach has been implemented on a Videre Design platform equipped with a
Hokuyo laser range finder and a Kinect. For localization and navigation, standard software
packages of the ROS framework have been adopted. Finally, for the ASR engine, we used
the Microsoft Speech Platform running on an external tablet with a push-to-talk microphone,
used to implement the connected speech interface.
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Figure 4.4. The Videre Design platform used in the experiments interacting with a user.

Figure 4.4 shows an image of the robot interacting with a user.

Interaction Example

In order to better understand the process of learning a complex plan, we report a video
showing an example interaction that guides the teaching process of the bringing an object to
a location plan1.

H: I’ll teach you how to perform the “bring an object to
a location” plan.

R: Ok, tell me how to perform this action.

H: First, go near the object, for example “the DVD”.

R: [moves near the DVD]

R: did I perform the right action?.

H: Yes.

R: Should I do anything else afterwards?.

H: Yes, pick up the object.

R: Ok, can you put the DVD on the tray?

R: [waits for the user]

U: [confirms through a dialog box]

... [The action is added to the task and the interaction continues]

H: bring the book to the office

1https://vid.me/HXnG
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R: [performs the new instance of the action]

The interaction starts with a sentence that instantiates the structure of the plan, defining its
general name (e.g. bring), and its arguments, (e.g. object and location). Afterwords, the
explanation phase begins: the use of predefined keywords enables for recalling constructs
of TDL associated with them. For example, the word “first” at the beginning of the second
sentence uttered by the human specifies to the system that the prompted primitive is part of
a sequence. The resulting interpretation of this statement will be a do-sequentially
construct, where the first action to be performed is a goTo:[@object]:

( do− sequentially

( goTo : [@object] ) ).

In this example, an instance of the semantic category object, e.g. the DVD, is provided so
that the robot can show the user that the action he prompted has been correctly understood.
The action is then executed using the example as input argument. Note that instead of using
predefined keywords to point out the end of a TDL construct, e.g. endif, we rely on a question-
answer modality to determine its scope boundaries. In this example, the question “Should I
do anything else afterwards?” is used to understand if the next instruction belongs or not to
the current TDL construct, i.e. the do-sequentially. The interaction continues with
the second action. This time the user refers only to the semantic category, but because of the
binding between variables and instances provided in the previous example, the robot asks
directly the user to put the DVD on the tray, as the @object has been locally instantiated
before. Doing so, the pickUp primitive is simulated and the learning process continues by
inserting it in the current TDL construct, e.g.

( do− sequentially

( goTo : [@object] )

( pickUp : [@object] ) ).

It is important to underline that the use of examples while explaining a task is not mandatory.
In fact, it is possible to refer only to the semantic categories involved in the task, without
using direct instances and skipping the demonstration about the action to perform. Using or
not using examples during the teaching phase does not affect the final plan instantiation.

At the end of the interaction, the final TDL structure is processed yielding the PNP plan
corresponding to it. Accordingly, the language of the robot is augmented by inserting in the
ASR grammar the semantic-syntactic structure corresponding to the command “bring an
@object to a @location”. Now it is possible to call the plan for any location and any object
defined in the ASR grammar.



4.1 Parametric Task Teaching 65

Table 4.2. Results obtained for the evaluation of the proposed task teaching framework.

Task Min # Err # Mis # Cor AT No Err AT w Err
enter @location 4 0.2 0.4 0.4 29 38
take an @object 5 0.6 0 0 41 52

bring an @object to a @location 7 0.2 0.6 0.6 57 74
give @person an @object 6 1 0.4 1 49 79

check an @object for a @person 5 0.6 0 0 55 69

4.1.3 Evaluation

In order to validate the system, three different kinds of analysis have been carried out.
First, we taught our robot five different tasks. During this teaching phase we measured the
accuracy of the system as well as the time needed for teaching each task. We then counted
the number of non parametric tasks that should have been taught to act on a particular set of
instances, comparing it with the number of parametric tasks needed to act on the same set of
targets. For example, following an unparameterized approach, in order to learn the bring an
object to a location task valid for every object and location in the environment, one should
have taught the robot a single task for each combination of instances of object and location.
Next, we replicated the tests performed on different mobile bases by the authors of related
works. This test aimed at verifying the expressive power of our approach with respect to
the others found in literature. Finally, since we adopted a formalism able to represent a
wide variety of execution paradigms, we attempted to show how other kinds of tasks could
be learned by the robot. In particular, we successfully managed to teach the robot a task
involving parallel actions. This is a first example of the several possible extensions that are
achievable by creating new TDLs and providing them with a suitable execution semantics
using PNP.

Expressivity and Effectiveness Evaluation

The aim of our work is to create an interactive task teaching framework, based on a natural
language interaction with the user; however, we do not evaluate our approach through a user
study, since usability is not the purpose of this work. Rather, we make an assessment of the
expressivity and effectiveness of our approach. In particular, to understand the impact of
learning parametric actions and to measure the efficiency of our approach, we first taught
our robot five basic tasks, each involving one or two parameters. The five tasks we selected
for the evaluation are just illustrative examples of what our system can learn, and they are
reported in the following list:

• enter @location: this action allows to add another possible linguistic reference for the
goTo:[@location].
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• take an @object: This task is represented by goTo:[@object] followed by
pickUp:[@object]. As the pickUp primitive, this task requires the robot to be
near the target object.

• bring an @object to a @location: (see above).

• give @person an @object: this task represents the action of bringing an object that the
robot already carries to a person, assuming that the position of the person is known.

• check an @object for a @person: this task consists of going in front of an object,
taking a snapshot of it and sending an email with the picture to the person.

In order to show the overall behavior of the system while learning this set of tasks,
we asked 5 users not familiar with robots to test the teaching framework. Each user was
first given a brief explanation of the task teaching framework and the semantic map and
primitives available to the robot. Next, the user was asked to teach the robot each of the
previously described actions in a random order. For each task we measured the following
quantities:

• The minimum number of instructions required to teach a specific task (Min).

• The average number of instructions not recognized by the automatic speech recogni-
tion (Err). In this measure, only the instructions that the ASR could not process were
considered.

• The average number of instructions misrecognized (Mis) by the natural language
understanding.

• The average number of corrections needed to modify a wrongly learned task (Cor).

• The average time in seconds needed to teach a specific task when no errors or mis-
recognitions were encountered (AT no Err).

• The average time in seconds needed to teach a specific task when errors or misrecog-
nitions were encountered (AT w Err).

Table 4.2 reports the numerical results obtained for the analysis. Notice that the time
measured refers only to the interaction with the user, as we avoided examples requiring the
action of the robot.

A first fact that can be noticed from the table is the cost, in terms of time, of a correction
process. When one or more corrections have been required, the average time needed to
correctly teach a task increases by 16.2s on average. Additionally, it can be noticed that
the longer a task is, the higher is the probability of having a misrecognition. This expected
result is in fact underlined by the highest number of misrecognitions obtained for the two
longest tasks (e.g., bring an @object to a @location and give @person an @object). For
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these particular tasks we also obtained the highest difference between AV no Err and AV w
Err, respectively of 17s and 30s. The effects of a misrecognition can be rather different:
in the starting phase of a procedure it may not require a correction (e.g. for the enter task),
while in other cases one or more corrections might be needed (e.g for the bring and give
tasks).

Finally, in order to give an idea of the teaching steps saved with this parametric approach,
we counted the number of non parametrized tasks that should have been taught to the robot
in order to cover the same exact set of possible instantiated tasks. This particular analysis
has been carried out considering the scenario presented in [16], built through the direct
interaction with a user. Such an environment consists of 23 objects and 10 persons, located
in 10 different rooms. In this specific environment, in order to obtain the equivalent of the
five parametric tasks, we should have taught the robot 723 single tasks by combining all the
instances of the involved semantic categories for each task. The gain in terms of number
of interaction is straightforward, especially if we consider the possibility of dynamically
extending the number of objects, or in general the knowledge about the environment.

Comparison with Related Works

A second validation of the learning ability of our system has been carried out by acquiring
the same tasks that systems presented in other related works learned. The dinner is ready
task in the article by Rybski et al. [90] is used to test the presented approach. Such a task is
composed by a sequence of goTo and say primitives, interleaved with some conditional
branches regarding the presence of specific persons in the environment. We taught our robot
the exact same task, resulting in the following TDL:

( do− sequentially

( goTo : [dining_room] )

( if ( isPerceived : [jeremy] )

then ( say[“Jeremy set the table”] )

else ( say[“cannot find Jeremy”]) )

( goTo : [living_room] )

( if ( isPerceived : [kevin] )

then ( say[“Kevin come to dinner”] )

else ( say[“cannot find Kevin”] ) )

( goTo : [bedroom] )

( say[“turn off the television”] )

(4.1)
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( goTo : [living_room] )

( say : [”task complete”] ) ).

The average training time for this particular task was 185 seconds. Even though the
environment we used for reproducing the task was different, our system was able to learn the
same sequence of actions learnt by the other robot. Such a result demonstrates the learning
ability of the system, independently from the actual scenario.

In a similar way, we managed to interactively teach the get coffee task presented in the
work by Meriçli et al. [92] to our robot. In this case, we had to slightly adapt the task learnt
as the set of primitives provided by the CoBot platform was different from ours. Indeed,
due to the lack of specific primitives, we exploited the do-until loop for tasks that required
quantified parameters, e.g. move forward 5.4 meters, terminating the loop with a specific
perception condition. Instead of referring to generic numbered landmarks, instead, we used
objects on the map to trigger some perception checks. The average training time for this
task was 92 seconds. The following TDL reports the result obtained:

( do− sequentially

( do ( getCloser : [] )

until ( isPerceived : [door] ) )

( turn : [right] )

( if ( isPerceived : [counter] )

then ( say : [can I get coffee please?] )

else ( say : [I am lost] ) ).

Teaching a More Complex Task

In order to asses the expressive power of our approach, we performed a third validation
of the system. Specifically, we used TDL to capture an additional execution paradigm
already available in the PNP formalism. To this end, we instructed our robot to execute
a complex task involving primitive actions to be performed in parallel. This pattern has
been realized using an ad-hoc TDL construct. We therefore designed a non parametric task
to patrol a wing of our department. Such a task consists of visiting three different rooms,
while continuously checking for the presence of persons. If a human is detected, the robot
sends an email sent to the security staff. The loop is ended when the robot reaches the final
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destination. The TDL structure representing the task is the following:

( do

( do− sequentially

( goTo : [office] )

( goTo : [storage_room] )

( goTo : [printer_room] ) )

and

( do

( if ( isPerceived : [anyone] )

then ( sendEmail : [security] )

else ( continue ) )

until ( in : [printer_room] ) ) ).

The resulting PNP is instead shown in Figure 4.5. According to this specific definition
of the patrolling task, the two branches are performed in parallel, by exploiting one of the
key features of the PNP formalism.

Figure 4.5. The resulting PNP for the patrolling task.

4.1.4 Section Summary and Discussion

In this section, we presented a novel approach for learning executable plans through the
natural interaction with the user, described as a combination of primitive actions. Specif-
ically, our system uses a grammar-based approach to first acquire the description of the
action, later converted into an executable Petri Net Plan, passing through an intermediate
representation expressed in a specifically developed language called Task Description Lan-
guage. The proposed approach takes a significant step forward by making task descriptions
parametric with respect to domain specific semantic categories. Moreover, by mapping
the task representation into a plan representation language, we have been able to express
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complex execution paradigms and to revise the learnt plans in a high-level fashion. The
teaching framework has been deployed on a Videre design robot, showing the advantage
of using an intermediate representation, namely TDL, together with the PNP formalism to
model the learning, revision and execution processes. With a double task representation
we have shown how it is possible to decouple the problem of capturing the wide variety of
linguistic expressions uttered by the user and the problem of defining a clear operational
semantics.

For future works, a number of additional features need to be addressed. We are first
investigating the issues that arise during the possible failure of an action. We would like in
fact to enable the user to teach the robot how to recover from a specific action failure. This
can achieved by exploiting the PNP formalism that allows for the implementation of actions
interrupts based on particular conditions. Moreover, we are investigating the possibility of
specifying optional parameters during the teaching phase when using examples. Instead of
just telling the robot if it performed the correct action or not, the user could indeed exploit
this particular phase for specifying optional parameters specific to the taught plan (e.g., by
saying “Yes but stop a little bit closer" for the goTo action). Finally, we are planning to
deploy and monitor our robot in our department for an extended period of time, by letting it
freely interact with the users present in the environment.

4.2 Task Generalization and Proposal

This work has been published in:

� Graph-Based Task Libraries for Robots: Generalization and Autocompletion. S. D. Klee, G. Gemignani, D. Nardi,
and M. Veloso. 14th Conference of the Italian Association for Artificial Intelligence, AI*IA 2015.

� On Task Recognition and Generalization in Long-Term Robot Teaching (Extended Abstract). G. Gemignani, S. Klee,
M. Veloso, and D. Nardi. 14th International Conference on Autonomous Agents and Multiagent Systems, AAMAS
2015.

� Task Recognition and Generalization in Long-Term Robot Teaching. G. Gemignani, S. Klee, M. Veloso, and D.
Nardi. Autonomous Robots and Multirobot Systems, ARMS 2015.

In this section, we address the problem of a user teaching an additional task to a service
robot that is deployed for an extended period of time. In such a scenario, the user is unlikely
to know all of the tasks previously taught to the robot. Therefore, we want the robot to
recognize when it is being taught a task similar to one that it already knows. In these cases,
the robot will use this information to propose the next steps of a task to the user, reducing
the necessary number of human-robot interactions.

For a long-term deployed robot, we assume that its task library will become very large.
So, it is not feasible to compare a newly taught task to every past entry. Since many tasks
have similar patterns of action and sensing primitives, instantiated with different parameters,
we instead focus on learning a library of general parametric tasks. Compared with the related
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work presented in the previous section, in this case we do not require the user to remember
how to teach parametric tasks to the robot. Instead, the robot extracts parametric tasks from
the already known and instantiated tasks. We show that by creating a parametric or general
task library we can perform online generalization and task step proposals for multiple given
libraries of tasks. Moreover, these parametric tasks can be referenced at teaching-time like
programming functions, instead of creating a specific instance of the task from scratch. This
greatly reduces the overall size of each task being taught if parts of it belong to a general
class.

In this work, we contribute an approach for measuring task similarity, performing task
generalization, and proposing future steps of a task during the teaching process. In this work,
we represent tasks as graph-based structures called Instruction Graphs [92]. We adopt this
alternative representation due to specific tools readily available while researching this topic.
However, the concepts presented in the rest of this chapter can be applied to the TDL and
PNP representation presented in the previous section. From a given Instruction Graph task
library, we perform frequent labeled subtree mining [128] to extract general classes and use
a structure-based similarity metric to propose the most likely task being taught. The main
contributions of this work are:

• An algorithm to generalize similar tasks.

• A structure-based approach for recognizing task similarity in task teaching frame-
works.

• A method for robots to propose the next steps of a task during teaching.

In the rest of the section, we first briefly summarize Instruction Graphs, in order to later
describe our Task Generalization and Proposal approach, showing all of our contributions
thoroughly. Next, we discuss the evaluation process undertaken to validate the approach.

4.2.1 Instruction Graphs

In the Instruction Graph representation, vertices contain robot-primitives, and edges represent
possible transitions between vertices. Mathematically, an Instruction Graph is a graph
G = 〈V,E〉 where each vertex v is a tuple:

v = 〈id, InstructionType,Action〉

where the Action is itself a tuple:

Action = 〈f, P 〉

where f is a function, with parameters P. The function f represents the action and sensing
primitives that the agent can perform, such as grasping or detecting a color. We introduce
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parameter types related to their purpose on the robot. For instance, on a manipulator,
the function set_arm_angle has parameters of type Arm and Angle, with valid values of
{left,right} and [0, 2π] respectively. The primitives and parameter types are robot-specific.

Each Instruction Graph is executed starting from an initial vertex, until a termination
condition is reached. During execution, the InstructionType of the vertex describes how the
robot should interpret the output of the function f in order to transition to the next vertex.
The Instruction Graph framework defines the following types:

• Do and DoUntil: Used for actuation primitives. The output of f is ignored because
there is only one out-edge. From now on, we will refer to both of these types of nodes
simply as Actions.

• Conditional: Used for sensing actions. The output of f is interpreted as a boolean
value used to transition to one of two children.

• Loop: Used for looping structures. The output of f is interpreted as a boolean value,
and actions inside of the loop are repeated while the condition is true.

• No-Op: Used to delimit the end of a loop or conditional branch.

Additionally, the Reference InstructionType are introduced for specifying hierarchical tasks.

• References: Used to execute one Instruction Graph inside of another to express
hierarchical tasks. The output of f is interpreted as a reference to the other task.

Figure 4.6 shows an example node with id 4, InstructionType Action, function set_arm_angle,
and parameters left and π. Figure 4.7 shows instead a possible Instruction Graph represent-
ing an action for a manipulator robot. For a more detailed overview of Instruction Graphs,
we refer the reader to the original publication [92].

Figure 4.6. Example of Instruction Graph node with id 4, InstructionType Action, function
set_arm_angle, and parameters left and π.

4.2.2 Approach

This work considers a robot with modular primitives that represent its action and sensing
capabilities. We assume that the robot has a library of common tasks, where each task is
composed by some of these primitives. Our goal is to identify common frequent subtasks
and generalize over them with limited user assistance. In this section, we present an in-depth
description of the generalization and task autocompletion algorithms.
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Figure 4.7. Example of Instruction Graph representing a plan for picking up a block and place it at a
particular location depending on the visibility of a certain landmark.

Generalizing Tasks

We define a general task as a Generalized Instruction Graph (GIG). In a GIG, the parameters
of some actions are ungrounded. In such cases, we know the type of these ungrounded
parameters, but not their value. So, for each parameter we associate a distribution over all
known valid groundings. For instance, in the case of a grounded parameter, the distribution
always returns the grounded value. Formally, a GIG is also a graph GIG = 〈V,E〉 where
each vertex v is a tuple:

v = 〈id, InstructionType,GeneralAction〉

GeneralAction = 〈f, P,Φ〉

where φi ∈ Φ is a distribution over groundings of the parameter pi ∈ P .
These distributions are learned during task generalization and are used to propose initial

parameters during task autocompletion. A GIG can be instantiated as an IG by grounding
all of the uninstantiated parameters. This process consists of replacing any unspecified pi
with an actual value.

Our approach generates a library of GIGs from a library of IGs, as shown in Algorithm 1.
The general problem of finding labeled subgraph isomorphisms is NP-Hard. However our
problem can be reformulated into the problem of finding common labeled subtrees in a
forest of trees. To this end, we create a tree representation of each IG. As the first step, we
define a mapping from IGs to Trees (T):

toTree : IG → T

and its corresponding inverse:
toIG : T → IG

The function toTree computes a labeled spanning tree of an input Instruction Graph (line 3).
Specifically, toTree creates a spanning tree rooted at the initial vertex of the input IG, by
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Algorithm 1 Task Generalization
1: procedure GENERALIZETASKS(IGs, σ, L)
2: // IG library is converted to trees
3: IGTrees← {toTree(g) | g ∈ IGs}
4: // Tree patterns are found by a tree mining algorithm
5: tp← ftm(IGTrees, σ)
6: // Mapping from tree patterns to IGs is created
7: igp← {〈p, toIG(T )〉 | 〈p, T 〉 ∈ tp}
8: // Filters remove unwanted tree patterns
9: igp← filter_not_exec(igp)

10: igp← filter_by_length(igp, L)
11: // Tree patterns of full tasks are reintroduced
12: igp← add_full_igs(IGs, igp)
13: // Vertices and edges of the GIGs are constructed
14: gigs← create_ugigs(IGs, igp)
15: // Parameters and distributions are computed
16: gigs← parametrize(IGs, igp, gigs)
17: return gigs
18: end procedure

performing a depth-first search and by removing back edges in a deterministic manner. This
ensures that instances of the same GIG map to the same spanning tree.

Each node in the tree is labeled with the InstructionType and function f of the correspond-
ing node in the IG. In this label, we do not include the parameters because we eventually
want to generalize over them.

Next, we use a labeled frequent tree mining algorithm to find frequently occurring tree
patterns (line 5). A frequently occurring tree pattern is a subtree that appears more than a
threshold σ, called the support. A tree-mining algorithm ftm takes as input a set of trees
and the support. As output, it provides a mapping from each tree pattern to the subset of
trees that contain it. Then, since each tree pattern is associated to a set of trees and each
tree corresponds to a specific IG, we can create a mapping directly from tree patterns to IGs
(line 7). We denote this mapping as IGP.

A tree mining algorithm will return many tree patterns. In particular, for any tree pattern,
any subtree of it will be returned. This is because each subtree will have a support at least as
large as its parent. Rather than keeping all these patterns, we focus on storing those that are
the most applicable. There are many possible ways to filter the patterns. We propose several
heuristic filters that select patterns based on their executability, frequency, and usefulness.

• Executable patterns are those that the robot can run.
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• Frequent patterns are statistically likely to appear in the future.

• Useful patterns reduce many interactions when correctly proposed.

Each filter is formally defined as a function:

filter : IGP → IGP

We first filter patterns that cannot be executed by the robot. In particular, we remove
patterns with incomplete conditionals and loops (line 9).

Then, there is a tradeoff between highly frequent patterns and highly useful patterns.
Patterns that occur with a large frequency are typically smaller, so they provide less utility
during task autocompletion. Larger patterns provide a lot of utility, but they are usually very
specific and occur rarely.

Less frequent patterns are already filtered out by the tree-mining algorithm when we
provide it a minimum support σ. To optimize for larger patterns that save more steps during
autocompletion, we also remove patterns that are shorter than a threshold length L (line 10).
This ensures that we do not keep any pattern that is too small to justify a recommendation to
the user.

Finally, since we are dealing with autocompletion for robots, one desirable feature is
to be able to propose entire tasks. Even if a full task has a low support, or is below the
threshold length, there is value in being able to propose it if a reparameterized copy is being
provided to the robot. Consequently, we reintroduce the tree patterns corresponding to full
IGs (line 12).

Even with these filters, we still keep some tree patterns that are complete subtrees of
another pattern. In practice, many of these patterns provide useful task autocompletion
suggestions. However, in memory-limited systems, we suggest also filtering them.

Finally, the algorithm processes the filtered set of tree patterns to create GIGs by creating
vertices and edges from the tree pattern and then parameterizing the vertices. First, to create
the GIG’s vertices and edges, we copy the subgraph corresponding to the tree pattern from
any of the IGs containing the pattern (line 14). This gives us a completely unparameterized
GIG (uGIG), with no parameter distributions. Next, we determine which parameters are
grounded in the GIG, and which are left ungrounded. A parameter is instantiated if it occurs
with the same value, with a frequency above a given threshold, in all corresponding IGs.
Otherwise, the parameter is left ungrounded with an empirical distribution.

This process is repeated for every subtree pattern not removed by our heuristic filters,
creating a library of GIGs (line 16). When this algorithm is run incrementally, this library
is unioned with the previous library. Such a mechanism represent an alternative to the
approach presented in Section 4.1. Indeed, in the previous section, the robot was able to
learn parametric tasks by directly interacting with the user. Instead, in the scenario here
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presented, the robot is able to learn parametric tasks by analyzing all the instantiated tasks
previously learned through the interaction with the user.

Figures 4.8a and 4.8c show example IGs for a task that picks up an object, and drops it
at one of two locations. Figures 4.8b and 4.8d depict their corresponding spanning trees.
Finally, Figure 4.9 shows the general task that is extracted. In this GIG, the parameters in
nodes 3 and 4 are kept instantiated, since they were shared by the two original IGs. The
others parameters instead are left ungrounded. These parameters have a type id, and a
distribution over the landmark ids {1, 3}, which were extracted from the IGs in Figure 4.8.

Figure 4.8. Example of two Instruction Graphs (a, c) converted into their corresponding spanning
trees (b, d). The tree pattern shared between them is circled in red.

Task Autocompletion

We now consider an agent that is provided a task incrementally through a series of interac-
tions. Each interaction consists of adding a vertex to the graph or modifying an existing
vertex. At any step of this process, the agent knows a partial task. After each interaction,
this partial task is compared against the library of GIGs to measure task similarity and
perform autocompletion.

The algorithm performs this comparison by checking if the end of the partial task being
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Figure 4.9. Example GIG that is extracted from the graphs in Figures 4.8a and 4.8c. The parameters
in nodes 3 and 4 are instantiated, since they were shared by the two original IGs. Instead, the
parameters in nodes 1 and 2 are left ungrounded.

provided is similar to a GIG (Algorithm 2). Specifically, we keep a set of candidate proposals,
denoted props, that match the final part of the partial task. When the partial task changes
(line 2), we first update this set to remove any elements that no longer match the task being
taught (line 3). Then, we add new elements for every GIG that starts with the new vertex
(line 4). When a threshold percentage τ of one or more GIGs in this set matches the current
partial task, the robot proposes the largest GIG and breaks ties randomly (lines 6 and 7).

Algorithm 2 Task Autocompletion

1: procedure AUTOCOMPLETE(GIGs, ig, props, τ )
2: if hasChanged(ig) then
3: props← deleteNotMatching(ig, props)
4: props← addNewMatching(ig, props,GIGs)
5: (best, similarity)← bestMatch(ig, props)
6: if similarity ≥ τ then
7: propose(best)
8: end if
9: end if

10: end procedure

When a specific proposal is found, the robot displays a representation of the GIG and
asks for permission to demonstrate the task. Having previously filtered all the incomplete
GIGs, all the proposals can in fact be executed. When granted permission, the agent
demonstrates an instance of the GIG, noting when a parameter is ungrounded.

At the end of the demonstration, the agent asks if the partial task should be autocompleted
with the demonstrated task. If so, the agent asks for specific values for all of the ungrounded
parameters. At this stage, the agent suggests initial values for each ungrounded parameter pi
by sampling from its corresponding distribution φi.

After all of the parameters are specified, the nodes matching the general task in the
partial task are replaced with one Reference node. When visited, this node executes the
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referenced GIG, instantiated with the provided parameters. With this substitution, the length
of the task is reduced.

Figure 4.10 shows a sample task acquisition for a Baxter manipulator interacting with
a user. After the first command, the robot finds at least one general task starting with
display_message. However, none of the GIGs recognized surpass the similarity-threshold
τ . When the third instruction is given to the agent, this threshold is surpassed, and the auto-
completion procedure is started. First, the robot asks permission to perform a demonstration
of the general task. After completing the demonstration, the robot asks if the autocompletion
is correct. If so, it also asks for ungrounded parameters to be specified and suggests values
using each parameter’s distribution.

Example Interaction

U: Open Gripper

R: I will open my gripper.

R: What should I do next?

U: Display message "Hello".

R: Ok, what should I do next?

U: Set your left arm to 80 degrees.

R: I think you are teaching me

something similar to: GIG_14.

R: Can I demonstrate it to you?

U: Yes.

R: First I will display the message "Hello".

R: Then I will set my left arm to 80 degrees.

R: Now I will set my right arm to 90 degrees (open).

R: This is my full suggestion.

R: Would you like to use it?

U: Yes.

[User specifies open parameters]

[User can rename the GIG]

Figure 4.10. Sample autocompletion interaction during task acquisition.

4.2.3 Evaluation

Several of our robots can perform generalization and autocompletion, including a manipula-
tor and a mobile base. In order to demonstrate the value of our approach, we define two sets
of tasks. Intuitively, the first set of tasks represents a robot that is still acquiring completely
new capabilities. Instead, the second set of tasks represents a robot that is acquiring instances
of tasks that it already knows. More formally, in the first set, Sd no tasks are repeated. They
share only a small fraction of similar components that can be generalized. To show that
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generalization takes place, we use a second set, Sr consisting of two repetitions of each
of elements in Sd with different parameters. We see that the algorithm recognizes and
autocompletes the second instance of each task.

An additional benefit of this approach is that we we can keep one common library
for all of our robots. If the robots have different primitives, their tasks are automatically
generalized apart. In fact, tasks belonging to different robots will not share any node to
the different primitives available. However, if two robots share primitives, our approach
can learn subgraphs common to both of them. In the rest of this section, we show in detail
experiments run on a Baxter manipulator robot.

Experiments with Baxter

Baxter has two 7 degree of freedom arms, cameras on both arms, and a mounted Microsoft
Kinect. The robot-primitives on Baxter manipulate the arms, open their grippers, display
messages, and sense landmarks. The frequent subtree mining algorithm we employ is an
open source version of SLEUTH 2.

The tasks that Baxter can perform range from waving to making semaphore signs to
pointing at landmarks. Many of Baxter’s tasks involve picking up an object and moving it to
another location. For instance, Figure 4.11 shows Baxter searching for a landmark to see if
a location is unobstructed to drop a block. Without task generalization and autocompletion,
a new task must be provided for each starting location and ending location in Baxter’s
workspace. With generalization and autocompletion, these locations become ungrounded
parameters that can be instantiated with any value.

Figure 4.11. Baxter performing an instance of the GIG shown in Figure 4.9. First, Baxter picks up
the orange block (a); then Baxter checks if a location is unobstructed with its left arm camera
(b); Since the location is unoccupied, Baxter drops the Block. (c); Finally, Baxter says that it is
done (d).

For this experiment, 15 tasks were taught by two users familiar with robots but not the
teaching framework. These tasks ranged from waving in a direction, to pointing to visual
landmarks, to placing blocks at different positions, to performing a series of semaphore
signals to deliver a message. Sd has 15 distinct tasks and Sr has 30 tasks. The average
length of a task in both sets is 9.33 nodes.

2www.cs.rpi.edu/~zaki/software/

www.cs.rpi.edu/~zaki/software/
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Experimental Results

As we accumulate the library incrementally, the order in which tasks are provided affects the
generalization. To account for this, we ran 1000 trials where we picked a random ordering
to our sets and had a program incrementally provide them to Baxter. The GIG library was
updated after each task was provided. At the end of every trial, we measured the number
of steps saved using autocompletion compared to providing every step of the task. This
measurement includes steps added due to incorrect autocompletion suggestions. For this
particular experiment, the support was fixed to 2, the minimum GIG length to 2, and task
autocompletes were suggested if τ = 30% of a GIG matched the partial task.

We compare our results to an upper bound on the number of steps saved by a specific
autocompletion algorithm. For any set of tasks that take n steps to be provided, and are only
proposed once τ percent of a task matches a GIG, we have:

OPT ≤ (1− τ) · n

This corresponds to generalizing every task after τ percent of it has been acquired. For Sd
and Sr we have:

OPTd ≤ 92

OPTr ≤ 184

Table 4.3 reports the result of the experiment. Specifically, in this table we report the
following measures:

• Maximum Steps Saved (%): maximum percentage of steps saved over all permuta-
tions, in comparison to the theoretical upper bound.

• Average Steps Saved (%): average percentage of steps saved over 1000 permutations,
in comparison to the theoretical upper bound.

• Average Partially Autocompleted: average number of tasks that were partially
autocompleted with a GIG.

• Average Completely Autocompleted: average number of tasks that were completely
autocompleted with a GIG.

As expected, Sr benefits the most from the autocompletion method. Specifically, the
average percentage of steps saved compared to OPTr is approximately 82%. For Sd, the
average compared to OPTd is 33%. In the former case, the robot is able to leverage the
knowledge of the similar tasks it already knows. Indeed, our approach meets the theoretical
upper bound when provided tasks from Sr in the optimal ordering. This fact is additionally
underlined by the number of tasks in which the robot suggested any correct GIG. In particular,
on average the robot proposed a correct autocompletion suggestions for 65% of graphs in
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Table 4.3. Results obtained for the two sets taught to the Baxter robot.

1st Set (Sd) 2nd Set (Sr)

Max. Steps Saved 70.65% 100%
Avg. Steps Saved 33.44± 14% 81.92± 7.05%

Part. Autocompleted 4.72± 1.56 4.70± 1.58
Compl. Autocompleted 0± 0 15± 0

the second set, and 30% in the first set. Also, the 15 IGs added to the second set are all
completely autocompleted from their other similar instance. Furthermore, this happens with
a statistically insignificant change to the effectiveness of the partial autocompletions.

Finally, the size of the GIG library for the first set was 21 and that the size of the GIG
library for the second set was 45. This shows that the heuristic filters we proposed achieves
a good balance between saving steps and library size.

4.2.4 Section Summary and Discussion

In this work, we considered autonomous robots that persist over time and the problem of
providing them additional tasks incrementally. Compared with the problem addressed in
Section 4.1, in this section we proposed an alternative approach for enabling a robot to
learn parametric tasks. In fact, instead of requiring a user to directly teach parametric tasks
to a robot, in this approach we considered using previous task knowledge to enhance the
capability of a robot. To this end, we presented an approach for generalizing collections of
tasks taught to a robot over an extended period of time. This bottom-up technique allows
an agent to learn parameterized tasks from collections of specific examples, based on task
structure. The main contributions are a method for finding generalized tasks using frequent
labeled subtree mining algorithms, and an approach for agents to propose future steps of a
task to reduce human-robot interactions and the size of each task. By mapping our tasks
to trees, we are able to handle the difficulty normally associated with finding subgraph
isomorphisms. Our generalization and autocompletion algorithms have been successfully
deployed on multiple robots, acquiring large task libraries. Our experiments report in-detail
the effectiveness of our contributions on a Baxter manipulator robot for two sets of tasks.
With both sets, we found a significant reduction in the number of steps needed for Baxter to
acquire new tasks.

In terms of future work, there may be other applicable filters for deciding which tree
patterns should be converted to GIGs. Furthermore, structure-based generalization is just
one way for a robot to express its capabilities. Future research may look at domain-specific
forms of task generalization. For instance, we might use the motion patterns of a manipulator
as a measure of task similarity. Finally, we are working to allow users to actively query the
robot for the tasks it knows. These queries may be goal-based or involve domain-specific
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information associated to each task.

4.3 Multi-Robot Task Teaching

This work has been published in:

� Multi-Robot Task Acquisition through Sparse Coordination. G. Gemignani, S. Klee, M. Veloso, and D. Nardi.
International Conference on Intelligent Robots and Systems, IROS 2015.

In this third section, we extend the previous works by considering a group of robots.
Specifically, we consider the problem of separately and incrementally providing tasks to a
group of autonomous robots that need to infrequently coordinate. The robots may have very
different internal representations of their state, actuation capabilities, and sensing capabilities.
Furthermore, they may acquire their tasks in different manners. For example, a manipulator
may be taught by a human through natural language, and a mobile base may acquire tasks
from a planner. However, to pick up a package and deliver it, the two robots must work
together. In these kind of tasks, we note that the robots do not need to coordinate at every
decision step. In fact, much of their tasks can be completed entirely independently. In
literature, this concept of coordinating when necessary is known as sparse-coordination [95].
In terms of task representation, sparse-coordination represents the joint state space only
when the robots need to coordinate.

Our goal is to enable heterogeneous robots, acquiring tasks from different providers, to
solve problems requiring sparse coordination. We first note that coordinating different robots
requires a common means of communication. To this end, we contribute a task representation
for a robot to incrementally acquire a task with preconditions and effects represented in a
shared domain language. Then, we present an approach to sparsely coordinate robots using
this task representation. Specifically, each agent conditions on the state of other robots to
sparsely coordinate.

Tasks are represented again as Instruction Graphs composed by action and sensing
primitives, conditionals, and loop structures. The preconditions and effects of the actions
are written using a common domain language. Robots keep track of their own state, and
condition on the state of each other by sending queries to interact. By only representing
the coordination between robots when necessary, this approach is partially immune to the
combinatorial explosion in the number of states found in other representations.

Our contribution has been used to coordinate several robots, including a Baxter and a
CoBot robot. Baxter is an industrial manipulator robot able to perform complex manipulation
tasks. CoBot is instead an omnidirectional mobile service robot equipped with a variety
of sensors including a laser range finder, microphones, a camera, and Microsoft Kinect
sensors [129]. We first show an example of how the two arms of a Baxter manipulator can
be treated as two autonomous agents and coordinated. We then show a more complicated
example involving a CoBot and the two arms. Figure 4.12 shows both robots.
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Figure 4.12. Baxter manipulator and CoBot mobile service robots coordinated with the proposed
approach.

Next, we introduce the technical details of our approach, present demonstrative examples,
and discuss the contributions with some hints on future work.

4.3.1 Approach

We consider several autonomous robots with primitives that represent their actions and
sensing capabilities. Each robot acquires its task separately and incrementally by interacting
with a provider, be it a user or a planner. Our goal is to allow these robots to sparsely
coordinate to complete their tasks. In this part of the thesis, we present an extension of the
Instruction Graphs formalism that allows us to represent and query robot states.

Sparse-Coordination Instruction Graphs

To sparsely coordinate, robots must keep track of their state and be able to query the
state of one another. We define Sparse-Coordination Instruction Graphs (SCIG) as graphs
G = 〈V, E〉 where each vertex v is a tuple:

v = 〈id, InstructionType, f , P, Prec, Eff 〉

where the additional elements Prec and Eff respectively represent sets of preconditions and
effects of the function f. More generally, each function f has an associated set of literals Lf

that represents its preconditions and effects. Thus, we define:

L =
⋃
∀f

Lf

as the common domain language used by all of the robots. We represent each literal using
STRIPS semantics [83]. In particular, each action adds or removes positive literals from
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the robot’s current state. While robots may represent their internal state differently, their
primitives express this state in terms of the common set of strips literals, L .

To associate these preconditions and effects to actions, each robot sensing and actuation
primitive is defined in the Planning Domain Definition Language (PDDL) [130].3 For
example, a Baxter manipulator may have an action pick_up(object_id), to pick up an object
with a given ID. Internally these objects are represented as a 3D point in space and bounding
boxes. However, the effects of the action are to remove the literal hand_empty, and then add
the literal holding(object_id). Figure 4.13 shows an example PDDL definition for Baxter’s
“pickup" action. Currently, we assume that all changes in state are captured by the robot
primitives and that each robot can only modify its own state.

(:action pickup

:parameters (?x)

:precondition (and (OBJECT ?x)

(hand_empty))

:effect (and (holding ?x)

(not (hand_empty)))

Figure 4.13. Example PDDL definition for the primitive “pickup". As preconditions, its parameter
must be an object, and the hand must be empty. The effects are that the hand is no longer empty,
and the robot is holding an object.

During execution, each robot keeps track of its own state. Specifically, the state predi-
cates are either appended or deleted from the robot’s state according to the effects of the
executed action. We introduce a special function check_literal, used in Conditional and
Looping vertices that can condition on the state of any agent. The check_literal function
takes as input a unique robot identifier and a query. In our framework the query is repre-
sented as a set of STRIPS predicates, possibly composed with the and, or and not operators.
The query is routed to the the robot with the corresponding identifier.

When a robot receives a query, it is evaluated against its current state. Each robot adopts
a closed-world assumption when responding to queries. In particular, the robot checks that
positive literals are present in its state and that negated literals are absent in its state. The
result of this query is returned to the requesting robot. In this way each robot has only a
representation of its own state, and makes no assumptions about the state of another.

Figure 4.14 shows a partial example of a SCIG for a CoBot mobile base, where the
check_literal function is used to condition on the state of a Baxter manipulator. Specifically,
the CoBot will perform the move_to action if Baxter’s state does not contain hand_empty.

With this approach we are able to implement coordination at a high level. In particular,
we define several useful coordination actions from Loops and Conditionals:

3Although we represent actions using PDDL, any other language could be used to define the common domain
language.
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Figure 4.14. Partial example of a SCIG for a CoBot conditioning on the state of a Baxter manipulator.
If Baxter’s state does not contain hand_empty, CoBot will perform the move_to action.

• Wait Until: The robot waits until another robot is in some state. This is implemented
with a Loop.

• Act Until: The robot repeats some actions until another robot is in some state. This is
implemented with a Loop.

• Ask: The robot conditions on the state of another robot. This is implemented with a
Conditional.

We provide examples of each of these forms of coordination in the next sections.

We note that for sparse-coordination, many of typical problems of multi-robot commu-
nication do not arise. For instance, consistency is not an issue, because the robots keep track
of only their own state, and directly query each other’s state as needed. Since coordination
is infrequent, and at a high-level, the robots can also cooperate in environments with high-
latency and low-bandwidth. In this work, we do not address the problem of faulty sensors or
non-deterministic action effects. For now, we assume that the robot-primitives are all fault
tolerant.

4.3.2 Demonstrative Examples

We coordinated several robots with the presented approach, including a manipulator and a
mobile base. In this section we show how multiple robots can be taught to perform different
tasks that involve sparse-coordination. In particular, we show how a Baxter robot can be
instructed to perform a manipulation task during which its two arms need to sparsely interact
with each other. Then, we extend this example by considering also a CoBot mobile base.
In this case, we show how the two arms and the mobile service robot can be instructed to
deliver and store an object.
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(a)

(b)

Figure 4.15. Sparse-Coordination Instruction Graphs extracted from the text in Figure 4.16. Specifi-
cally, (a) represents the graph for the left arm, while (b) represents the graph for the right arm.
The nodes in yellow represent the vertices that require a query to another robot’s state.

Store Task

We first show how the two arms of a Baxter manipulator can be treated as separate agents
and coordinated. We denote the arms as left_arm and right_arm. Table 4.4 shows the set of
robot primitives for both arms, with their associated preconditions and effects. Our task is to
have the left arm assist the right arm in finding an unobstructed location to place an object.

In this example, a user describes the task to each agent in two separate teaching sessions
through natural language. Specifically, the left arm is instructed to wave until the right arm
picks up an orange wooden block (Figure 4.19a). At this point, the state of the right arm is
changed to holding(object_1) and the function check_literal(right_arm, hand_empty) returns
false. After realizing this fact, the left arm starts checking if a landmark can be detected at
the drop position (Figure 4.19b). In the case a landmark is detected, the left arm points at it,
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Left arm:

wave while right hand is empty

move to location 1

if landmark 1 is visible

point to location 1

otherwise point to location 2

Right arm:

pick up object 1

wait while left arm is not pointing

if left arm is pointing at location 1

move to location 1

otherwise move to location 2

end if

drop object 1

Figure 4.16. Natural language input provided to the two arms. The names of the agents are shown in
red, and their states are shown in blue.

reaching the pointing_at(location_1) state. The function check_literal(left_arm, !pointing)
now returns false and the right arm drops the block at location_1 (Figure 4.19c). Instead,
when the landmark is not detected the left arm points at an alternative location (location_2)
where the orange block can be dropped (Figure 4.19d).

Figure 4.16 shows a natural language description of the task provided to the two arms.
Instead, Figures 4.15a and 4.15b show the corresponding Sparse Coordination Instruction
Graphs. In this specific case, the natural language description of the tasks was parsed
through the aid of specifically developed parsers, similarly to a previous work [32]. The
descriptions were grounded to objects and locations of a knowledge base containing a high-
level description of the environment and the robot primitives. In this example we assume
that the two robots have the same high-level representation of the environment. In other
words, we assume that the two robots agree on the position of the two possible locations.
The execution of the task can be seen in the video attached.4

Deliver and Store Task

Next, we extend the previous example by considering also a CoBot robot [129]. CoBot must
coordinate with the Baxter’s arms in order to deliver and store an object. To this end, we
modify the previous example by making the right_arm wait for CoBot to be at a specific
location. Note that the right_arm is instructed to wait just for simplicity. It could also be
instructed to do other work while waiting for CoBot’s arrival. When CoBot reaches the state

4http://youtu.be/4nLjuLhFUvk
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Table 4.4. Baxter arms primitives with associated preconditions and effects.

Action Primitives Preconditions Effects

wave() - -

wait(time) - -

is_visible(landmark_id) - -

move_to(location) -
-pointing,

-at(old_location),
+at(location)

pick_up(object_id) hand_empty
-hand_empty,

+holding(object_id)

drop(object_id) holding(object_id)
-holding(object_id),

+hand_empty

point(location_id) -

-at(old_location_id),
+at(location_id),

+pointing,
+pointing_at(location_id)

at(location_3), the right_arm will pick up the delivered object from CoBot’s basket, storing
it at the location pointed out by the left_arm. For CoBot, we defined the robot primitives
shown in table 4.5. For Baxter we used the previously described primitives.

Table 4.5. CoBot primitives with associated preconditions and effects.

Action Primitives Preconditions Effects

Say(message) - -

Move_to(location) -
-at(old_location_id),

+at(location_id)

The user teaches the tasks to the robots in three separate teaching sessions. Figure 4.18
shows a natural language description of the tasks provided to CoBot and to the right_arm.
The task given to the left_arm is the same as in the previous example. Figure 4.20 depicts
the Sparse Coordination Instruction Graph extracted for CoBot. Since the SCIG of the right
arm is almost identical to Figure 4.15b, we omit it.

Discussion

Sparse-Coordination Instruction Graphs allow users to teach a wide-variety of tasks that
require multi-agent coordination. In particular, they are well suited to tasks that require
high-level cooperation between robots. We have found the approach especially effective
with robots that have separate goals. For instance, our fleet of CoBots perform many tasks,
such as escorting people and picking up objects. Some of these tasks require brief interaction



4.3 Multi-Robot Task Teaching 89

(a) (b)

(c) (d)

Figure 4.17. (a) The left arm is shown waving until the right arm picks up an orange wooden block.
(b) The left arm checks if the drop position is open. (c) Since this position is open, the left arm
points at it where the object will be placed. (d) In the second run, since the drop position is not
open, the left arm points at an alternative position.

with Baxter, which has its own goals to accomplish. The robots coordinate infrequently
because their goals require a limited amount of interaction.

We can also represent joint-plans with goals that require a tight coupling of robot actions
at each decision step. An example of such a task is the bimanual manipulation of a large
object. However, each robot will need to make many queries to represent most of the joint-
state space before acting. Thus, it is often impractical for a user to teach tightly coordinated
tasks to the robot.

4.3.3 Section Summary and Discussion

In this section, we extended previous related works by considering multiple robots. In par-
ticular, we addressed the problem of multiple robots separately and incrementally acquiring
tasks that require coordination. By leveraging principles from sparse-coordination we enable
robots to acquire and represent joint-robot plans compactly. Specifically, we introduced
Sparse-Coordination Instruction Graphs, which encapsulate robot-primitive preconditions
and effects. The robots act independently, and only coordinate when necessary by querying
each other’s state. We demonstrated this approach with two examples. First we treated both



90 4. Acquiring Procedural Knowledge

CoBot:

move to location 3

say ‘‘I am here to deliver a package"

wait while left arm is not pointing

move to location 4

Right arm:

wait while CoBot is not at location 3

pick up object 1

wait while left arm is not pointing

if left arm is pointing at location 1

move to location 1

otherwise move to location 2

end if

drop object 1

Figure 4.18. Natural language input provided to CoBot and the right_arm. The description of the
left_arm task instead is the same shown in Figure 4.16. The names of the robots are shown in
red while their states are shown in blue.

arms of a Baxter robot as separate agents and had them coordinate to store an object at an
unobstructed location. Then, we extended this example by having a CoBot mobile base
deliver the object that the arms stored.

As a future work, we are investigating extensions to represent tasks that require tight
coordination more compactly. We are also interested in how our coordination approach can
be used with knowledge-acquiring actions. For instance, in cloud robotics a robot-primitive
may request information, or even queue a task on another robot.
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(a) (b)

(c) (d)

Figure 4.19. (a) CoBot reaches the pick up location while the right arm is waiting and the left arm is
waiving. (b) The right arm can now pick up the object. (c) Detailed view of Baxter picking up
the object. (d) The left arm points at location 1, the right arm drops the object, and CoBot leaves.

Figure 4.20. SCIG extracted from the CoBot’s task description in Figure 4.18. Node 3 requires a
query to another robot’s state, in this case Baxter’s left arm.
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4.4 Chapter Summary and Discussion

In this chapter, we have presented multiple approaches for acquiring procedural knowledge.
Such approaches allow a non-expert user to specify new tasks based on the action primitives
already known by the robot. In the development of these approaches, we focused on
the knowledge about specific tasks, so that the robots are able to cope with specific user
needs, rather than always performing preprogrammed tasks. Additionally, we have again
shown how human-robot collaboration can play a key role, enabling even non-expert user
to instruct a robot through simple interactions. The designed approaches have been tested
with three different robots, in different environments and with multiple users, showing the
overall generality of the contributions proposed. In particular, these contributions have been
experimentally evaluated on two kinds of mobile bases as well as a manipulator robot. The
results of the experiments show that, despite some artificiality of the language used during
the interaction, the knowledge acquisition process is robust and easy to be performed also
by non-expert users and on different robotic platforms.
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Chapter 5

Acquiring User Knowledge

The acquisition of the two types of knowledge presented in the previous chapters is carried
out through the interaction with the user. However, each user is a unique person, with
distinctive understandings of the world and different ways of talking about them. In this
chapter we address two problems regarding preferences of users interacting with the robot.
Specifically, we first consider the problem of learning how specific users communicate with
robots. To this end, we describe an approach that enables a robot to learn new expressions
used by a user to refer to objects in the operational environment. Additionally, this approach
allows a user to recognize the robot understanding capabilities, enabling him or her to learn
how to interact with an unknown robot. Next, we consider the problem of learning how
specific users understand and reason about qualitative spatial relations. To this end, we
present an approach that allows a robot to learn user preferences related to regions in the
environment used during task executions. This learning is based on the feedback given by
the human to the robot after the completion of each task.

5.1 Learning to Understand Each Other

This work has been published in:

� Language-Based Sensing Descriptors for Robot Object Grounding. G. Gemignani, M. Veloso, and D. Nardi. 19th
Annual RoboCup International Symposium, 2015. Best Paper Award.

As a first setting, we consider the scenario in which a human needs to instruct an
autonomous robot through a natural language interface. We assume that this robot is
provided with a specific internal representation of the environment that is unknown to the
user. For example, a robot might be able to understand colors but not orderings. Also, it may
be able to recognize shapes but may not be able to resolve spatial referring expressions. In
this scenario, we address the problem of allowing a robot to recognize what object properties
can or cannot be grounded with its current sensing capabilities. Moreover, we address the
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problem of learning new ways of referring to objects by exploiting past interactions with the
user. While addressing these problems, our goal is to enable an untrained user to understand,
through the interaction with the system, which object properties the robot can understand.
These interaction can then be used to enhance the grounding capabilities of our robots. Note
that in this section, we will use the term grounding to refer to the concept of “physical
symbol grounding" as defined by Vogt [131].

To this end, we contribute a novel approach that enables the robot to recognize unknown
objects properties contained in the received commands and warn the user about them. We
note that the majority of the techniques proposed in literature make the implicit assumption
that if a robot can semantically parse an utterance, then it will be able to ground it. We
believe that this assumption may not always hold, since while a robot may be able to
correctly parse a sentence and extract its semantics, it may not be able to ground it due to
a missing sensing capability. Hence, we internally represent sensing capabilities through
sensing descriptors and use them to recognize unknown object properties. At this point, the
robot can notify the user and request an alternative command. In addition, the robot can
learn new object properties by leveraging these interactions with the user. After learning, the
robot is able to execute the natural language commands, as in Figure 5.1. Our contribution
has been used to instruct several robots, including a Baxter manipulator able to perform
complex manipulation tasks. In this section, we describe all the components of our approach
along with in depth illustrative examples with the Baxter manipulator robot.

Commands

- pick up the cubic block

- grab the yellow block

- touch the second block

- point at the left block

- take the narrow block

Figure 5.1. Baxter manipulator robot used in our experiments and examples of commands that our
approach is able to successfully execute.

In the remainder of the section, we provide an overview of our natural language approach
describing all of our contributions thoroughly. Then, we present an application of the
approach to the case of a Baxter manipulator. This setting is then used to quantitatively
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evaluate the proposed approach.

5.1.1 Approach

In this section, first we motivate and introduce the concept of sensing descriptors. Next, we
present our approach for human-robot natural language interaction based on such a concept.
Finally, we show how the system can leverage previous interactions with users to learn
previously unknown referring expressions for the objects perceived.

Sensing Descriptors

Usually, when dealing with robots and natural language user commands, a standard pro-
cessing chain is adopted to decouple the semantic parsing problem from the grounding
problem [28, 29, 25, 32]. First, the natural language utterances are converted into text
through an automatic speech recognition (ASR) system. Next, the text is converted into a
specific representation that captures the semantic meaning of the uttered command. This
conversion is carried out either through grammars or probabilistic approaches. The obtained
representation is then “contextualized” in the operational environment through a grounding
process. The final result is an executable function and a set of parameters passed as input.

In general, during this process each natural language command is grounded through
a combination of sensing actions and queries to a given knowledge base. However, this
approach does not take into account the sensing capabilities of the robot. In fact, we note
that approaches proposed in literature often assume that if the robot can semantically parse
an utterance, then it will be able to ground it. However, a robot may be able to correctly
parse a sentence and extract its semantics without being able to ground the command due to
a missing sensing capability. Hence, we propose to explicitly represent in the knowledge
base these capabilities and use them to recognize parts of the commands that could only be
grounded through a sensing ability not available to the robot. To this end, we introduce the
concept of sensing descriptor.

Each sensing operation carried out by a robot can be defined as a function that takes
as input a particular type of sensed data and outputs a value expressed in the internal
representation of the robot. This value will be an instance of a sensing descriptor. Formally,
a sensing operation can be defined as:

fsensing : D → SD

were D is the particular type of data sensed and SD is a specific sensing descriptor. As an
example, let’s consider the operation of sensing the color of a particular object. The input
will be the RGB values of the pixels sensed by a camera. The output will be one or more
instances of the sensing descriptor color (e.g., [255, 0, 0] or red depending on the internal
representation of the robot). These sensing descriptors can be used to check if the utterances
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received from a user can be grounded with the current capabilities of a robot. We perform
this check as an intermediate step between the semantic parsing and the grounding process,
as explained in the next section.

Human-Robot Natural Language Interaction

Figure 5.2 shows an overview of our processing chain. Specifically, this processing approach
is divided in four consecutive steps. First, speech is converted into text using a free-form
speech-to-text engine. Text from speech is confirmed by the user. Thus, without loss of
generality, the input of the system is established as natural language text.

Figure 5.2. Overview of our natural language processing chain. Instead of directly grounding the
frames extracted from the commands, we perform an additional step that analyzes the sensing
descriptors included in the frame elements.

Next, the text is converted into a specific representation characterizing the semantic of
the sentence. This step is performed through the aid of specific grammars that drive the
recognition process by attaching a proper semantic output to each grammar rule. The output
has the form of a semantic frame representing a “situation” in the world (typically an action)
inspired by the notion defined in the Frame Semantics linguistic theory [33]. The meaning
of each frame can be enriched by semantic arguments, called frame elements, that are part
of the input sentence. The output of the recognition process is then converted to a parse tree
that contains syntactic and semantic information. This information is used to instantiate
a frame, similarly to the work by Kollar et al. [124]. As an example, the command “pick
up the red block” will be mapped to the GETTING frame. The sub-phrase “the red block”
will instead represent the specific frame element THEME, which represents the target of the
GETTING action.

At this point, instead of directly grounding the frames in the internal representation
of the robot we explicitly represent each sensing descriptor that can be recognized and
grounded by the robot, also defining the range of values that it can assume. Formally, in
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our knowledge base we represent every sensing descriptor SDi that can be handled by a
robot, also representing all its possible known instances sdj ∈ SDi. We use these sensing
descriptors to check if the obtained frame elements can be grounded with the current sensing
capabilities of the robot. Hence, we define sensing descriptor extractor a function ψ able to
extract from each frame element all the contained instances of sensing descriptors. Formally,
if we define FE the frame element type, the sensing descriptor extractor can be specified as:

ψ : FE → {SD1,SD2, ...SDn}

where SDi is a specific sensing descriptor extracted from the given frame element.
There are many possible ways to implement this function. In our approach, the sensing

descriptor extractor is represented as a parser that exploit grammatical rules to carry out its
task. In fact, we note that particular grammar elements are associated to referring expressions
that require sensing capabilities to be grounded. Hence, for our specific case, we propose an
heuristic rule that selects all the adjectives found in the frame elements. This rule is used to
handle element frames such as “the big red and cylindric block” where the word “and” may
or may not be used and where the words “big”, “red”, and “cylindric” need to be extracted.
The words extracted represent the sensing descriptor instances that will be checked in the
knowledge base. If all the instances are found to belong to a particular sensing descriptor
expressed in the knowledge base, the system will proceed to ground the command, otherwise
we either leverage dialog or adopt a probabilistic approach to resolve this issue.

Handling Unknown Sensing Descriptors

When an instance of a sensing descriptor is not found in the knowledge base two different
scenarios may occur:

• The referring expression belongs to an unknown sensing descriptor and it has never
been used by a user;

• The referring expression belongs to a sensing descriptor not available to the robot but
it has been previously used to refer to a particular object.

In the first case, the robot asks the user to provide an alternative referring expression
to the object, while keeping track of all the referring expressions used in the different
interactions. These expressions are in fact the unknown sensing descriptors found in the
frame elements that are not represented in the knowledge base of the robot. Since there
is a limited amount of sensing properties that can be expressed, eventually the user will
refer to the object in a way that the robot can understand, enabling the robot to associate
all the previously used referring expression to the grounding found. To this end, we
explicitly represent this association in the knowledge base by using the binary logic predicate
sd_grounding(X, Y). In this predicate, X represents the unknown instance of a sensing
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descriptor, while Y represents the grounding found through the multiple interactions with
the user.

For example, let us consider a robot that is only able to recognize colors. Additionally,
let us assume that a user needs to refer to a cylindric red object. At a first interaction a
user might refer to the object as “the cylindric block”. When warned by the robot that the
term “cylindric” can not be understood, the user will provide a command with an alternative
referring expression. Eventually, the user will refer to the object as “the red block”, enabling
the robot to correctly ground the expression and assert sd_grounding(cylindric, block_1) in
his knowledge base. Figure 5.3 shows an example of a dialog between a manipulator robot
and a user that our system is able to understand and the information that the robot is able to
extract and store in the knowledge base.

Figure 5.3. Example of a dialog between the robot and a user that our system is able to understand
and the information extracted and stored in the knowledge base.

To each association instance in the knowledge base, a number is also attached to keep
track of how many times the referring expression has been used to refer to a particular
object. This counter is needed to handle the alternative scenario that may occur. In this
second scenario, a referring expression belonging to an unknown sensing descriptor has been
previously used to refer to a particular object. In this case, we adopt a probabilistic approach
to ground the expressions. Specifically, if we define KB as the knowledge base available to
the robot, R the referring expression being analyzed and G the possible groundings for it,
we can obtain the most probable grounding by selecting the one that maximizes Bayes rule:

p(G|R; KB) = p(R|G; KB) · p(G; KB)∑
R p(R|G; KB) · p(G; KB) .

Here, the prior over groundings p(G; KB) is computed by looking at the counts of each
element of G in the knowledge base. The other term p(R|G; KB) is instead obtained by
counting the number of times a particular referring expression has been used to refer to a
particular grounding, and dividing by the overall number of referring expressions used for
the same grounding. Formally, if we define count the function that returns the number of
times that a particular association has been encountered, we can compute p(R|G; KB) as:

p(R|G; KB) = count(association(R,G))∑
R count(association(R,G)) .
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After having grounded the expressions, we allow the user to give feedback to the robot to
update the counter attached to each association instance. Algorithm 3 reports the overall
natural language processing approach. Specifically, the algorithm takes as inputs the natural
language command expressed as text and a specific knowledge base. The command is
first analyzed to obtain its representation in terms of frames and frame elements (line 3).
Next, the sensing descriptor instances are extracted from each frame elements through the
sensing descriptor extractor ψ (line 5). Once extracted, the instances are checked against
the available knowledge base to find any that cannot be grounded with the current sensing
capabilities of the robot (line 8). If an unknown instance is found, the robot exploits dialog
and the previous knowledge acquired to assign a grounding to the referring expressions
(line 10). Otherwise, the command is grounded into the knowledge base available to the
robot to obtain the final executable function (line 13).

Algorithm 3 Ground Command
1: procedure GETEXECUTABLEACTION(Text command C, knowledge base KB)
2: // Extract frames and set of frame elements
3: f, FE← extractFramesAndFrameElements(C)
4: // Extract the set of sensing descriptor instances
5: SD← ψ(FE)
6: // Select unknown sensing descriptor instances
7: USD← selectUnknownInstances(SD, KB)
8: if USD 6= {} then
9: // Exploit Dialog and Previous Experience to ground command

10: Φ← handleUnknownSensingDescriptors(USD, SD, KB, f, FE)
11: else
12: // Otherwise normally ground command
13: Φ← ground(f, FE)
14: end if
15: return Φ
16: end procedure

5.1.2 Evaluation

In this section we describe in detail how the presented approach has been deployed on
a Baxter manipulator robot able to manipulate a set of blocks placed in front of it. This
setting has been used to quantitatively evaluate our proposed approach. Since the evaluation
space of the experiment was large and generating results with humans was extremely time
consuming, the experiments were conducted by using a simulator faithful to the chosen
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setting1. A representative sample of the scenarios described in this section was successfully
run on the manipulator interacting with humans, achieving results that are consistent with
those reported in the following sections.

Setup

Baxter has two 7 degree of freedom arms, cameras on both arms, and a mounted Microsoft
Kinect. Baxter has been programmed to perform the actions touch, grab, move, point to, and
push. These primitives are used to manipulate a set of blocks located on a table in front of
the robot. The manipulated blocks have different shapes and colors. Additionally, each block
has a unique id, associated with a specific QR code. Given this setting, we considered the
sensing descriptors shown in Table 5.1. Specifically, five different blocks were considered:

• A short, wide, triangular, blue block;

• A short, narrow, cubic, brown block;

• A short, wide, bridge-shaped, yellow block;

• A tall, narrow, rectangular, green block;

• A tall, narrow, cylindric, red block.

Additionally, these blocks were associated with the number one through five, respectively.
Figure 5.1 shows the described scenario.

Table 5.1. Sensing descriptors considered in the chosen scenario and possible values.

Sensing descriptors Possible values
color {blue, brown, yellow, green, red, orange, purple}
shape {triangular, cubic, bridge-shaped, rectangular, cylindric}

block id {first, second, ..., fifth}
height {short, tall}
width {narrow, wide}

spatial location {left, center, right}

Before accepting commands, the robot was allowed to analyze the scene in order to accumu-
late knowledge about the operational environment. This knowledge was stored in the form
of logic predicates in a knowledge base. The spoken commands given to the robot were con-
verted into text through a free-form ASR2. For this particular scenario, a dedicated grammar
was developed to convert the natural language commands to the previously described frame
representation. To extract the sensing descriptors from the frame elements, a POS Tagger3

1https://github.com/RethinkRobotics/sdk-docs/wiki/Baxter-simulator
2The Google free-form ASR has been used.
3We exploited the Stanford POS Tagger to extract the sensing descriptor instances from the frame elements.
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was used to grammatically analyze the words in the command. Particularly, we adopted the
heuristic of extracting the adjectives related to target objects, considering them instances of
a specific sensing descriptor. With this approach we were able to allow users to understand
how to instruct the robot while interacting with it.

Approach Evaluation

In order to show the effectiveness of our algorithm, we compared our approach with an
algorithm commonly used in the literature. Specifically, the chosen two-step approach first
converts the received commands to frames exploiting grammars. Then, it directly grounds
the commands without exploiting any information about sensing descriptors. When the
algorithm receives a command that can be grounded to multiple targets (e.g., “touch the
narrow block” in this scenario), it selects a random target between the possible ones.

The two approaches have been tested by first generating all the possible commands
that can be given to the robot in this setting. Figure 5.1 shows some example commands
generated. Next, 50 commands were randomly chosen and incrementally given in input to
the robot. When the robot wasn’t able to understand an object attribute, the property was
changed with another one not yet used. This process was repeated until the robot understood
the command. Such an operation has been carried out for both approaches and averaged for
100 times by varying the number of sensing descriptors known by the robot. For each run
we measured the cumulative number of interactions needed to execute all the 50 commands.
Figure 5.4 shows the results obtained in the experiment.

Figure 5.4. Results for the experiment performed on both processing chains averaged for 100 times
by varying the number of sensing descriptors known by the robot.
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From the graph, it can be noticed that on average, our algorithm required significantly
less interactions to ground the randomly chosen commands. Moreover, it is worth noticing
the effects of the different available levels of information on the two approaches. In fact,
when the two robots were capable of understanding and grounding most of the used sensing
descriptors, the two approaches had a comparable result. Instead, when a lower amount of
information was available, our approach greatly outperformed the other one, leading to a
decrease in interactions needed to understand the command, up to approximately 50% in
the chosen scenario.

5.1.3 Section Summary and Discussion

In this section, we considered an autonomous robot provided with an internal representation
of the environment, unknown to a user interacting with it through natural language. In this
setting, we addressed the problem of allowing humans to understand the internal repre-
sentation of the robot through dialog. Moreover, we enabled our robot to learn previously
unknown object properties leveraging the past interactions with the user. We successfully
deployed our approach on a Baxter manipulator robot able to carry out tasks assigned by
several users through natural language. Specifically, our experiments report the performance
of our algorithm in this scenario, suggesting an improvement in the grounding effectiveness
compared to another commonly used approach.

As a future work, we are studying extensions of the proposed approach. In fact, as a
long term goal, we would like to generalize the approach allowing our robots to not only
recognize unknown object properties but also every unknown concept contained in the
received commands.

5.2 Learning Spatial Preferences for Task Execution

As a second issue about user profiling4, we consider the problem of learning different
qualitative spatial understandings of users through human-robot interaction. Specifically, we
aim at enabling a robot to learn regions of space used in user commands that are not simply
described by the geometry of the environment, but also by their function (or semantics
more generally). Such regions are called Context-Dependent Spatial Regions (CDSRs) [99].
Considering these regions, we study the scenario in which a robot needs to carry out a task.
Specifically, we focus on tasks that involve reaching a position specified by a user through a
spatial relation. An example of this type of task is represented by the command of delivering
an object to a person. In this case, the task involves reaching a point near the position usually
occupied by the person to which the object needs to be delivered. In this scenario we assume

4The ideas described in this section have been developed in collaboration with Dr. Nick Hawes, Senior
Lecturer at University of Birmingham
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that the position of the person is known and fixed in time. Additionally, we assume that a
default probability density function for each spatial relation is given a-priori to the robot.
An example of such density function in the case of the spatial relation near is shown in
figure 5.5.

Figure 5.5. Possible default probability density function for the spatial relation near.

In this setting, we address the problem of learning which particular position (i.e., CDSR)
the user prefers the robot to be in, while carrying out the given task. We make the assumption
that this preference is defined, in part, by the arrangement of the objects in the environment.
The preferences are represented as Gaussian Mixture Models (GMMs) that are modified,
starting from a default model, based on the Boolean feedback provided by the user after the
execution of each task. In addition, we address the problem of transferring the knowledge
acquired in previous scenarios to new settings, in order to speed up the learning process.
In fact, we hypothesize that such a transfer will allow a robot to locate more quickly the
positions that satisfy a user for a given task. The transfer is carried out by first finding a
mapping between the objects located in the two rooms. Then, by abstracting the components
of the preference model through QSRs, we produce a qualitative description of their position
with respect to the objects in the environment. Such qualitative descriptions are finally used
to perform the transfer.

In the remainder of the section, we provide an overview of our approach describing all
of our contributions thoroughly. Then, we present preliminary results obtained in a specific
case scenario to better show the functioning of our approach.
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5.2.1 Approach

We consider an autonomous robot that has been assigned a task to be carried out. We
assume that such a task involves moving to a certain location expressed through a spatial
relation. For example, a task of such kind could consist of delivering an object to a location
or retrieving an object from a person. In fact, both tasks involve getting close to a certain
target that will either load or unload the robot. In this scenario, our goal is to enable the
user to teach the robot which position they prefer the robot to be in, in order to carry out
the assigned task. In this section, we describe how the user preferences are modeled and
how such models are refined through vocal human-robot interaction. Next, we will show
how such preferences can be transferred from one target location to another, exploiting
qualitative spatial reasoning.

Modeling User Preference

We model the preferences of the user as probability distributions. Such distributions are
used to choose the final destination to be reached by sampling from them and removing
the points occupied by obstacles. Starting from a default probability distribution DPD(x|r)
assigned to each spatial reference r, the probability distributions are modified based on the
Boolean feedback provided by the user. Such Booleans inform the robot whether the user
likes or does not like the final position occupied. The Booleans are used to create a Gaussian
Mixture Model that is combined with the given default model in order to obtain the model
that will be used in the next task execution.

A Gaussian Mixture Model is a parametric probability density function represented as a
weighted sum of Gaussian component densities. GMMs are commonly used as a parametric
model for the probability distribution of continuous measurements. Mathematically, GMMs
are defined as the weighted sums of M component Gaussian densities:

GMM(x|λ) =
M∑
i=1

wig(x|µi,Σi) (5.1)

where x is a D-dimensional continuous-valued data vector, wi are the mixture weights such
that

∑M
i=1wi = 1, and g(x|µi,Σi), are the component Gaussian densities. Each component

density is a D-variate Gaussian function with the following form:

g(x|µi,Σi) = 1
(2π)

D
2 |Σi|

1
2
· exp

(
−1

2
(x− µi)∑
i(x− µi)

)
(5.2)

with mean vector µi and covariance matrix Σi. The complete Gaussian mixture model is
parameterized by the mean vectors, covariance matrices and mixture weights from all the
component densities. These parameters are collectively represented by λ = {wi, µi,Σi}.

In our scenario, each Boolean is associated with the position pi assumed by the robot
during the execution of a given task. Each of these Booleans is associated to a Gaussian
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component density created with a mean vector µi = pi, a fixed covariance matrix, and a
weight wi = 1/N , where N is the number of Booleans gathered by the robot for a given
task. Note that for each task and each parameter we store two specific Gaussian Mixture
Models, one for good feedback and one for bad, represented by the parameters λ. Once
the Gaussian Mixture Model is created based on the feedback of the user, it is then used in
the next execution of the specific task. In fact, by overlaying these GMMs over the default
model, we obtain a new distribution, that is sampled in order to locate the new target position
to be reached. Such overlaying is mathematically carried out in the following way:

p(x|r, λgood, λbad) = DPD(x|r) · [GMMgood(x|λgood)− GMMbad(x|λbad)] . (5.3)

Thus, over subsequent trials, the region preferred by the user gets iteratively defined.

Transferring User Preference Models

After showing how to model user preferences, in this part we tackle the problem of transfer-
ring such models to unknown users and rooms. We make the assumption that these models
are partially defined by the arrangement of objects in the target room. To this end, we
perform the transfer based on the previously built models in three steps. First, we choose
the best previously learned model to transfer from. Then, we abstract the GMM components
through qualitative spatial reasoning by analyzing the spatial relations between the object in
the environment and the chosen model. Lastly, we create a qualitatively similar CDSR in
the target room based on the result of the previous step.

Choosing the Best Model When the robot carries out a task in a novel environment or
for a new user, two possible scenarios can be identified. The same task has been previously
carried out in a similar scenario or the specific assigned task has never been considered
before. In the latter case, the robot exploits the default model associated to the spatial
relation used in the command to choose the destination position. From that default model,
the robot builds a new preference model as described in the previous section. In the other
scenario the robot transfers a similar and previously built model to the new setting, obtaining
a new and transferred CDSR for the specific task to be carried out.

We assume that the position and shape of the transferred CDSR depend on personal
user preferences and on the operational environment. Since user preferences are personal
and therefore often unique, we rank the possible starting models based on the room type
and on the objects within them. Specifically, starting from all the available models, we first
discard all the ones that are associated to a different type of task. Then, we select the models
associated to the same type of room. If there are multiple possible models, we choose the
one associated with the room that has the higher number of objects in common with the
target room, breaking ties randomly. If there are no models of such type, we use the default
model as in the previous case.
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Algorithm 4 GMM Abstraction
1: procedure ABSTRACTMODEL(room, relations, feedback)
2: // Initialize empty result list
3: result← []
4: // Cycle over common objects and considered relations
5: for commonObject in room do
6: for relation in relations do
7: // Convert feedback to a specific metric relative to object and relation
8: metrics← toSpatialRelaiton(commonObject.pose, relation, feedback)
9: // Instantiate a new GMM

10: classifier← GMM()
11: // Run the Expectation-Maximization Algorithm on metrics
12: classifier.fit(metrics)
13: // Predict the posterior probability
14: predictions← classifier.predictProbability(metrics)
15: // Save the result if the relation is meaningful
16: if predictions < THRESHOLD then
17: result.append([commonObject,relation,classifier])
18: end if
19: end for
20: end for
21: return result
22: end procedure

Abstracting GMM Components Once we have selected the preference model to transfer
from, we analyze the associated feedback given by the user (Algorithm 4). In particular, we
cycle through multiple spatial relations (i.e., distance and relative angle) and every object in
common to the two rooms, in order to differentiate between meaningful and not meaningful
relations objects and poses (line 5). To this end, we first convert the feedback poses to the
dimension metric relative to the object and relation considered (line 8). For example, if we
are considering the relation “near”, we convert the feedback pose to a distance relative to
the position of the object considered. Then, we use these metrics as input training data for
an Expectation-Maximization Algorithm (line 12). Such algorithm is used to fit different
GMMs to various dimensions of the feedback poses. The obtained GMMs are then used
to predict the posterior probability of the data under each Gaussian in the model (line 14).
Such predictions are finally used to differentiate between meaningful and not meaningful
relations (line 16). At the end of this process, we obtain a list of meaningful relations, each
associated to a specific object and a classifier (line 21).
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Transferring Models At this point, we have an abstract description of the starting user
preference model that needs to be transferred to the new target scenario. In order to do so,
based on the obtained abstract model we create a qualitatively similar CDSR in the target
room. This new CDSR is then used as the default model for the new task, allowing the user
to change it expressing their preferences as previously described.

The creation of the qualitatively similar CDSR is a straight-forward process when there
is an exact match between the object in the base and target rooms and their spatial layout. In
fact, in this scenario the abstract model is reprojected in the target room to form the new
default preference model. However, when the object types, or their spatial relations differ,
the problem becomes more complicated. For example, let’s consider the simple case of two
offices that are one the mirror image of the other. If we directly apply the abstract model
extracted from one room to the other, then the obtained CDSR appears in a wrong position.

In this work, we have taken into account only similar rooms and rooms that are mirror
images of one another, leaving more complicated transformations for future work. For this
scenario, we build a qualitative relation graph of the objects inside each room. In particular,
this graph contains vertices that are labeled with the type of each object in the room.
Instead, the edges are labelled with the qualitative spatial relation that relate the two objects
connected. For our purpose we limit such relations to near/far and left/right/behind/front.
With the graphs of the two rooms we determine the transformations that needs to be applied
to the transferred model. This produces a CDSR in the correct location in the target room.
The next section illustrates in detail an example to better clarify our approach.

5.2.2 Demonstrative Examples

In this section, we show how a mobile robot can learn CDSRs through the interaction with a
user. In particular, we show how a simulated SCITOS G5 robot can learn a CDSR related
to a deliver task involving a specific user. Additionally, we show how this model can be
transferred to another room, in order to decrease the user interactions needed to learn a new
model.

Simulation In order to simulate the robot and the interaction with the user, we adopted the
MORSE simulator [132], which is able to simulate realistic small and large environments, as
well as user interactions. We adopted standard ROS modules for navigation and localization,
while relying on PNPs for modeling robot behaviors. In particular, Figure 5.6 shows the Petri
Net Plan used to model the deliver behavior of the robot used in this setting. Specifically, in
this plan, the robot first queries the internal database to retrieve the ID of the target to be
reached. Next, it computes the best target pose based on the preference model of the user
built so far. Finally, after moving to the final position the robot asks the user for feedback.
The interactions with the users have been implemented with a vocal interface, composed
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by the Google ASR coupled with a parser based on grammars and implemented in Prolog.
As the majority of the other works presented in this thesis, we represented the linguistic
semantics through frames that activate the transitions of the PNPs. Finally, the robot was
provided with a semantic map represented through the SOMA ROS package developed in
the STRANDS project5.

Figure 5.6. Petri Net Plan used to model the deliver behavior of the robot used in the example.

Example In order to demonstrate the functioning of our approach, we describe in detail
the learning mechanism in a specific scenario. In particular, we consider the previously
mentioned environment composed by two offices. Such offices hold a desk, a chair and a
cabinet positioned as depicted in Figure 5.7. Note that, in this setting, the offices are each
other mirror images.

Figure 5.7. The simple environment composed by two offices and used in the example.

5https://github.com/strands-project/soma

https://github.com/strands-project/soma
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In this environment, we first commanded multiple times the robot to deliver a book to
the person located in the room to the right. After each task execution, we gave feedback to
the robot for the location chosen to deliver the book. Figure 5.8 shows the changing spatial
model over time as the robot receives different feedback. In particular, Figure 5.8a shows
the initial near model, Figure 5.8b depicts the model after receiving two negative feedback,
while Figure 5.8c illustrates the final preference model learned by the robot for this specific
scenario. As requested, the user was able to teach the robot the preferred Context-Dependent
Spatial Region.

Figure 5.8. The changes of the spatial model in time as the robot receives different feedback during
the example described.

Once the first spatial model was learned, we ordered the robot to deliver the book to
the other office, which was never used before as a target. In this occasion, the robot was
able to transfer the model learned from the first room in order to learn more quickly the new
spatial model. In particular, the transfer has been performed by first clustering the feedback
given by the user assuming a single good position. Next, this clustering has been used to
describe the position in terms of spatial relations with respect to all the objects in the room,
as described in the previous section. Having this qualitative description of the position, it
has been transferred to the target room (discarding non-discriminative relations) to create
a new preference-based default model. Note that in this process, the abstract model has
been reflected in order to compensate the different positions of the objects in the two rooms.
Figure 5.9a shows the transferred model in this particular example, Figure 5.9b depicts the
model after the robot has gathered some negative feedback, while Figure 5.8c illustrates the
final preference model learned by the robot for this specific room.

Figure 5.9. The changes of the transferred spatial model in time as the robot receives different
feedback from the user.
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5.2.3 Section Summary and Discussion

In this section, we considered an autonomous robot that needs to learn new Context-
Dependent Spatial Regions defined by user preferences. In this setting, we have developed a
mechanism that allows the user to provide Boolean feedback to the robot about the position
assumed during the execution of the commanded task. Based on these feedback we have
proposed an approach to learn CDSRs and transfer them to new scenarios to speed up the
learning process. We successfully deployed our approach on a simulated mobile base robot
able to carry out tasks assigned by users through natural language. Specifically, we have
described a demonstrative example to better explain our algorithm in an office environment,
pointing out possible advantages that can be achieved through our contribution.

As future work, we would like to quantitatively evaluate our approach and extend it
in two ways. In fact, we would like to address the problem of how to identify differences
between two rooms and how to express them in transformations that can be applied to the
transferred model. Finally, we would like to enable the user to also express feedback in
more complex ways beyond Booleans. To this end, we are thinking about allowing users to
adopt natural language expressions to better describe their spatial preferences.

5.3 Chapter Summary and Discussion

Given the uniqueness of every human, in this chapter we have presented two approaches
for learning user preferences. In particular, since users understand the world and talk
about it in different ways, we have considered two different scenarios that involve user
profiling. In particular, we have presented two approaches that allow a robot to learn new
user referring expressions to objects and user context-dependent spatial region preferences.
In the development of these approaches, we focused on the knowledge about users, so
that the robots are able to adapt to the unique aspects of every human, rather than always
assuming to be interacting with the same user. Additionally, we have again shown how
human-robot collaboration can play a key role, enabling even non-expert users to change
how a robot behaves around them through simple interactions. The designed approaches
have been tested with two different robots, in different environments and with multiple users.
In particular, these contributions have been experimentally evaluated on a simulated SCITOS
G5 mobile base as well as on a Baxter manipulator robot. The results of the experiments
show that, through simple vocal interactions between the robot and the user it is possible to
enhance the agent capabilities, adapting it to the peculiarity of every user.
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Chapter 6

Conclusion

In this thesis, we focused on robots that operate in environments populated by humans.
While considering the current problems that withhold the deployment of such robots in
our homes, we identified as one of the main issues to be tackled the inability of adapting
to multiple scenarios encountered during operation. In fact, robots are currently unable to
enter an unknown environment and autonomously learn its relevant aspects. Moreover, they
are currently often unable to carry out the various tasks assigned by the users due to the
differences of every human’s need and the complexity of the environment they operate in.
Finally, robots are still hardly accepted into our homes due to their lack of understanding of
how each human talks and thinks differently about the world.

To overcome these limitations, multiple researchers have proposed to represent robotics
deficiencies explicitly. With such representations robots can ask for human help when
recognizing a scenario not manageable autonomously. In this thesis, we embraced this
philosophy to allow robots to effectively adapt and operate in human-populated environments.
Instead of relying on general world and user models that support robot operation, we hence
exploit the interaction with the user to learn the specifics of every encountered scenario and
adapt to it.

In particular, first we addressed the problem of acquiring specific knowledge about the
environment a robot is deployed in. To this end, in Chapter 3 we presented an approach
that exploits multi-modal user interaction to acquire a semantic map of the operational
environment incrementally and on-line. Specifically, with the aid of a laser pointer and a
vocal interface, the user is able to tour the robot around an indoor environment and teach
it about the multiple objects and room found inside it. Through these interactions, the
robot is able to acquire specific models and labels later used to support task execution. In
particular, the semantic map created through this process has been used to support various
forms of linguistic and spatial reasonings to carry out tasks given to different mobile robots.
The proposed approach improves over existing methods by enabling robots to effectively
enter unknown environments and incrementally build rich and accurate semantic maps that
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support reasoning and task execution.

Once we were able to effectively build semantic maps, we addressed the problem of
learning to carry out specific tasks described by the users as a combination of the available
robotic primitives. In fact, through the natural language interaction with non-expert users,
robots can adapt to the unique needs that each human has and cannot be foreseen at design
time. To this end, in Chapter 4 we considered three open issues regarding robotic task
teaching. In particular, we first described a mechanism to teach a single robot complex
parametric tasks, which are instantiated during execution. By decoupling the problem of
understanding the user description of the tasks from the problem of executing them, we
presented a two-layered representation that effectively supports single robot task teaching.
Next, we considered the problem of using previous knowledge about tasks to come up with
suggestions to support the user during the teaching phase. In particular, by mapping our task
graph representation into a tree representation, we showed how such trees can be mined to
generate general tasks. These tasks are then used to provide autocompletion suggestions to
the user during the teaching of new tasks. Finally, we considered the problem of teaching
multiple robots tasks that require them to coordinate. In particular, by allowing robots to
query one another’s states, we showed how a user can be enabled to teach multiple robots
how to sparsely-coordinate.

As a final topic, we considered the problem of learning how humans think and talk about
the environment they are placed in while interacting with a robot. To this end, in Chapter
5 we first discussed an approach that enables a robot to learn new referring expressions to
objects used by the user while interacting with it. While learning such new expressions the
robot is able to enhance its grounding capabilities and inform the user about unknown terms
used in the commands uttered. In this way, the user is also able to learn how to communicate
with a possibly unknown robot. Finally, we considered the problem of learning the real
meaning of different qualitative spatial relations used by the user in the commands given to
the robot. To this end, we presented a preliminary study on this topic. Specifically, in this
study, starting from a default model associated to each spatial relation, for each user, task,
and target location we modified the default model to come up with a personalized one. By
acquiring a boolean feedback from the user after each execution of a task, we combined the
default model with a new feedback gaussian mixture model. Through this mechanism, the
robot is able to adapt to the requests of the user by changing its model of the space.

The above mentioned contributions have been validated on multiple robots interacting
with various users in different environments. Through such experiments we have demon-
strated that by leveraging natural language human-robot interactions, our general approaches
enable different kinds of robots to adapt to new environments, task requests and user pe-
culiarities. From the evaluations carried out on the robots we have verified that multiple
contributions presented in this thesis could be applied to robots and technologies already
present on the market. Specifically, with the aid of an engineering and optimization process,
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a semantic mapping approach similar to the one presented in Chapter 3 could be used to
enhance the capabilities of telepresence robots that are currently entering the market [109].
For instance, users could be allowed to give a tour of their homes or offices to the robot,
teaching it about relevant objects or rooms in the environment. These knowledge could
then be used to simplify the teleoperation of a robot by allowing both the remote and the
nearby user to command the robot using natural language. For example, users could just
instruct the robot to reach a previously learnt room or object, without the need to teleoperate
it. Additionally, some of the task teaching approaches presented in Chapter 4 could be used
to specify tasks to be accomplished both by telepresence robots or by novel voice command
devices that are being introduced on the market (e.g., Amazon Echo [133]). Indeed, such
approaches could enable these technologies to perform novel tasks specified by the users as
a combination of basic capabilities of the given platforms. Finally, some of the techniques
presented in Chapter 5 could be applied to the previously mentioned agents, as well as to
different vocal interfaces that are increasingly being deployed on computing devices (e.g.,
Siri [134], Google Now [135], or Cortana [134]). Such approaches could in fact allow a
more advanced personalization of these technologies.

Despite these encouraging results, several areas for long-term research still exist. In
particular, our semantic mapping approach should be extended to 3D in order to support
more advanced spatial reasoning and task executions. In fact, for tasks that require a more
fine grained precision, novel and more accurate perception capabilities should be integrated
as they are developed by the research community. Leveraging such enhanced capabilities,
robots should be enabled to adopt more proactive behaviors such as suggesting possible
object categorizations or autonomously searching and discovering objects similar to the
known ones. Additionally, natural language interactions should allow users to adopt a more
flexible language while interacting with the robots. Consequently, the representations used
to internally ground such commands should be extended accordingly. Finally, we have just
started to scratch the surface of the research topic of user profiling through robot interaction.
We believe that this research area will become increasingly more investigated as robots will
start entering our homes.
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