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Abstract

Beam diagnostics is an essential need for any accelerator system. These systems can
be thought as the ’organs of sight’ to control the behaviour and the properties of
a beam. Even though about 3% to 10% of the total cost of an accelerator facility
must be dedicated to diagnostic instrumentation, usually the amount of man-power
for the design, operation and further development of these devices far exceeds 10%,
due to the complex physics and techniques involved. A large variety of parameters
need to be measured for a good characterization of the beam.

One of these parameters is represented by the beam profile, meaning the spatial
intensity on a particular plane, transverse to the particle direction. The beam profile
is usually monitored with scintillator screens, wire scanners, diamond detectors or
scintillating fibres that may have problems of resolution and radiation resistance.
Thanks to the advanced researches made in Micro Electro-Mechanical Systems,
nowadays scientists are designing a new kind of particle detector that may solve
these problems.

This thesis will describe a new kind of detector for beam profile monitoring
composed by microcapillary tubes filled with a scintillating fluid and the dedicated
readout electronics. Such a new kind of detector has been described for the first time
in the article ’Scintillation particle detection based on microfluidics’ by A. Mapelli
et al. [1] in 2010. A collaboration started in the first half of 2012 between INFN
Rome, EPFL Lausanne and CERN in order to develop this detector.

This work reports what has been accomplished so far in order to build the readout
electronics of the detector prototype. It has been structured as follows:

• The first chapter covers a brief history of the evolution of the available tech-
nology that led to the design of the microcapillary detector, the measurements
needed for beam profile monitoring and the general structure of the devices
used.

• The theory behind particle tracking and monitoring is presented in the second
chapter. In particular the scintillators’ behaviour, the theory of energy loss
through matter and the detector geometry will be discussed.
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• In chapter three the available light sensors are described.

• The readout components and the readout architecture will be described in
chapter four.

• The laboratory setup and the debugging tests are covered in chapter five.

• In chapter six the first results are presented.

• The last chapter will finally be dedicated to the conclusions that can be drawn
from this work.
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Chapter 1

Introduction

Starting from the beginning of the eighties, scientists had the ambition of manufac-
turing processes that can create exceptionally small machines in order to explore,
build and control the extremes of length and time scales. Wanting to achieve this
goal, Micro Electro-Mechanical Systems (MEMS) have been invented thanks to the
progress of the latest solid-state physics researches. The acronym MEMS refers
to devices that have a typical length of less than 1mm but more than 1µm, that
combine electrical and mechanical components and that are assembled using inte-
grated circuit batch-processing technologies. This manufacturing process is carried
on using surface and bulk silicon micromachining, electrodeposition, plastic molding,
lithography and electrodischarge machining (EDM) [2].

To these days MEMS are finding increased applications in a variety of industrial
and medical fields, with a potential worldwide market in the billions of dollars.
Thanks to the growth of this market a lot of researches have been funded, leading to
a fast evolution of the modern technology and letting scientists hope in a short time
Nano Electro-Mechanical Systems development. Having achieved this goal, medical
and high energy physicists have the possibility to take advantage of these devices to
develop a new generation of particle detector for beam diagnostics.

In this chapter the essential beam profile monitoring characteristics for both
high energy physics and hadrotherapy will be covered and the main detectors with
their limitations, used for these purposes, will be described as well.

1.1 Beam Monitoring

During the data taking process, a large amount of parameters needs to be monitored
in order to completely control an accelerating apparatus. There are three main
classes of diagnostic requests at any of these facilities:

• Reliable, quick measurements to determine the basic parameters of a machine
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setting, mainly used as a fast check of the general functionality. These devices
should be non-destructive for the beam, yielding an online information and
their readings should give a single number or simple plots.

• Instrumentation built for a daily check of performance and stability or for the
control of wanted parameter changes in the accelerator setting. It can also be
used for solving simple machine problems in case of any malfunction.

• Complex instrumentation for the commissioning of a new accelerator compo-
nent, for the development of higher performance and for solving more serious
problems in case of a malfunction. The devices can be more sophisticated to
use and might be destructive for the beam. The main goal of these devices is
the creation of reliable information about the complex beam behavior allowing
a clear interpretation.

The monitoring of a beam profile is mainly included in the first category.
This kind of measurementment is exploited to control the beam width, as well as

the transverse matching between different parts of an accelerator. Usually multiple
devices, assembled for this purpose, are installed in the accelerating tunnel in order
to control how quadrupole magnets bend, focus and correct the particle beam.
Depending on the beam particles, their current and their energy, a very large variety
of devices exists.

Some of the most popular techniques used for this goal are represented by
scintillator screens, wire scanners, diamond detectors and scintillating fibres. A
scintillator screen is the most common and easy way of measuring a beam profile
consisting of intercepting the beam with a scintillating layer (a P43 phosphor layer
for example) and viewing the emitted fluorescence with a CCD camera. Alternatively
wire scanner devices are used where a high spatial resolution of the beam is needed.
Normally the size of an electron beam is less than 1 mm, while proton or heavy ion
beams have large diameters, up to some cm. Alternatively, diamond detectors are
being studied in particle beam profile and dosimetry monitoring apparatuses. These
devices have become more and more interesting for research purposes due to their
qualities compared to the previously used silicon diodes. Finally scintillating fibres,
filled with organic or inorganic liquids, are being used as multipurpose detectors.

1.2 Hadrotherapy Beam Profile

Nowadays, beams of photons, protons and other heavier particles are also being
used in oncological therapies. In fact, in comparison to conventional therapies,
high-energy beams, constituted by such particles, offer significant advantages for
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cancer treatment. Their energy distribution in tissue is in fact characterized by
a small deposit at the beginning of their dose release and a distinct high energy
deposit, called Bragg peak, with a sharp fall-off at the end of their interaction path
as can be seen in fig 1.1.

Figure 1.1. Bragg curve for photons and protons beams. [3].

Taking full advantage of this well-defined distribution and its small lateral spread,
modern beam detectors allow a millimeter precision dose delivery. In addition, ions
heavier than protons show an enhanced biological effectiveness in the Bragg peak
region resulting in a reduced subsequent cellular repair; these characteristics are
particularly attractive for radio-resistant tumors treatment that have to deal with
targets localized near vital organs.

There are two main approaches to deliver the desired dose distribution to a
certain patient:

• Discrete scanning (spot or voxel): in this technique the dose is delivered by
pencil beams applied in discrete steps. After each pencil beam is delivered,
the source is interrupted, the beam steering elements are changed to deliver
particles at a different position and/or energy and the beam is then turned back
on; such process is repeated until the desired dose distribution and number of
particles have been delivered.



1.2 Hadrotherapy Beam Profile 4

• Continuous scanning (raster scanning): this is a method in which a pencil
beam is scanned continuously in a raster pattern. A variation in intensity as
a function of the beam position is achieved by continuously controlling the
proton-beam intensity and the scanning speed. Once one "layer" of particles
of a particular energy has been delivered, the source is interrupted, the beam
energy is changed, and the beam is then turned back on to irradiate the next
layer.

In order to control such dose delivery techniques, beam monitor systems are
needed. Beam monitor devices for medical applications have analogous features to
high energy physics detectors, differing in their goals and control mechanisms since
they are used for running-in, setting-up and maintaining the patient treatment beam.
These devices need to be capable of monitoring various beams that differ from each
other in intensity, energy range, transverse widths, longitudinal time-profile and
particle constitution in order to satisfy all the various treatments’ requirements.
There are mainly three types of monitoring apparatuses that are required to handle
these treatment beams:

• Profile detectors: they usually have a destructive interaction with the beam
and, as their name suggests, they are used to determine the beam profile, in
order to monitor the quality of the beam, similarly to the high energy physics
case. A typical requirement for such type of detectors is a dimension of the
order of 3 − 5 cm, with a spatial resolution of the order of 100µm. These
detectors are usually positioned in vacuum.

• Beam position detectors situated in treatment rooms: they monitor the position
of the beam just before interacting with the patient. These devices need to
have a non-destructive interference with the beam in order to prevent beam
diffusion and Bragg peak position changes during the treatment. The maximum
amount of material tolerated is usually of the order of 1mm water-equivalent.
Moreover the size of the detector needs to be large enough to follow the beam
rastering of the order of 20 × 20 cm2, while the readout system needs to be
capable of following the beam raster frequency of the order of 100Hz.

• Dosimetry detectors: they are exploited to measurement the quantity of energy
delivered to the patient; such kind of detectors are usually placed inside a
human water phantom, in order to measurement the total energy and the
depth profile of the incident beam; because of that, these detectors need to be
accurately calibrated.

A wide variety of detectors for these purposes are being studied in modern



1.3 Existing Detectors 5

hadrotherapy facilities and the different available possibilities that can be adopted
will be shown in the following sections.

1.3 Existing Detectors

In this section the functioning principles of different available beam monitors will be
shown with their strengths and weaknesses, in order to introduce the microcapillary
scintillators covered in the following chapter.

1.3.1 Scintillator Screens

The most direct way to observe a particle beam consists in monitoring the light
emitted from a scintillation screen through a commercial video or CCD camera.
These devices are installed in nearly all accelerator apparatuses from the beam
source up to the target and their general schematic structure is shown in figure 1.2.

Figure 1.2. Schematic representation of a scintillation screen detector [3].

When a particle penetrates a scintillating material, the electronic energy loss
generated by the collision between the beam particles and the target electrons create
some fluorescence photons, later measured by a camera. The properties required
and owned by a well designed detector of such kind are:

• High light output matched to the optical system of the CCD camera in the
optical wavelength range between 450nm and 700nm.

• High dynamic range and a good linearity between the incident particle flux
and the light output. In particular, when a saturation of the light occurs a
deformation of the recorded profile is generated.
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• Radiation hardness to prevent permanent damage caused by the incident
particles.

• No absorption of the emitted light to prevent artificial broadening caused by
the stray light trapped in the material.

• Fast decay time in order to allow the observation of possible beam size varia-
tions.

Plastic scintillators have only low radiation hardness and for this reason various
kinds of inorganic materials have been studied. In Figure 1.3 different proprieties of
possible material used to fabricate the scintillator screens are shown.

Figure 1.3. Different proprieties of possible material used to fabricate the scintillator
screens [3].

Figure 1.3 gives only approximated parameter values since the properties of
doped materials are strongly dependent of the incident particle concentration.

For high intensity beams, it needs to be checked that the material is not destroyed
by the power absorption; in particular, for slow heavy ions this restricts the use
of these detectors. A disadvantage of the screens is related to the large amount
of material present along the beam. In fact, the material used is usually several
mm thick that it causes a large beam energy loss, excluding this detector from the
possible devices used for the diagnostics of a circulating beam inside a synchrotron
or for online monitoring measurements.

1.3.2 Wire Scanners

An alternative to scintillator screens is represented by wire scanners. This type of
detector is composed of a single wire placed perpendicular to the beam path as
shown in figure 1.4.
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Figure 1.4. Arrangement of a straight wire on a fast pendulum mechanics [3].

The advantage of this technique is given by the resolution in the sub−mm range
making this device used in electron accelerators with a comparable beam size and
proton synchrotrons due to the small amount of intercepting matter. With the
devices controlled by a special pneumatic mechanism, scanning velocities up to
10m/s can be achieved.

The wire material used is usually carbon or SiC due to its low weight and
low nuclear charge Z, resulting in a low energy deposition in the wire (see Bethe-
Bloch equation in section 2.1). In addition, these materials can withstand high
temperatures without melting and their thickness can be designed to be down to
10µm. Because of the structure of the single wire scanned, even with high scanning
velocity, the beam profile is not taken at a single instant, giving therefore only the
possibility to probe the steady state distribution.

For the beam profile display, the wire scanner space location, determined by
the position encoder, is plotted on the horizontal axis while the vertical axis beam
signal can be deduced from the current generated by the emitted secondary electrons.
Another way of measuring the beam profile on both axis can be achieved by mounting
the wires in a crossed orientation, as shown in figure 1.5.

The strengths and weaknesses of this device can be schematized as follows:

• A moving wire samples the beam profile at different locations and at different
times; therefore variations of the beam intensity in time will be mixed with
transverse intensity variations.
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Figure 1.5. Wired scanners mounted in crossed orientation to measurement the beam
profile on the x and y axis. [3].

• In case of pulsed beams further complications may arise from the demand for
exact synchronization.

• A wire scanner can have much higher resolution compared to a scintillator
scanner, down to 10µm, due to its constant movement. (For high resolution
mechanical vibration has to be avoided.)

• The electronics for data acquisition is cheap for a scanning system and it has
a low energy deposition in the wire, depending on its material component.

1.3.3 Diamond Detectors

In radiotherapy, silicon diodes are the detectors which are most often used for
the measurementment of relative dose distributions. A good alternative recently
explored for particle beam monitoring is represented by diamond detectors [4]. Some
studies on the use of natural diamond detectors for similar measurements have been
published but, due to the high cost of natural diamonds, they had difficulties in
establishing themselves as a solid alternative. Thanks to the progress made in the
chemical vapor deposition (CVD) technology the production costs have decreased
and this solution got a foothold in the particle beam monitoring panorama.

Due to the fact that diamond is almost equivalent to soft tissue, having an atomic
number Z = 6 instead of Z = 7.42, the output signal of the detector is directly
proportional to the absorbed dose rate of tissue and therefore the data produced can
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be used without any correction. On the other hand in high energy particle physics
these devices are being studied for experiments such as the BaBar, Belle, CMS and
ATLAS [5].

The working principle of these devices is shown in figure 1.6; when a charged
particle passes through the diamond crystal, it interacts with the material producing
an electron-hole pair, subsequently accelerated by an electric field and extracted as
an electric signal.

Figure 1.6. Schematic representation of a diamond detector [5].

These type of detectors have a high response, good time and spatial resolution
(around 2µm [6]), good temperature stability (about 1%K−1) and good radiation
stability and tolerance (up to 2·1015 particles per cm2). Their drawback is represented
by a fast readout and low noise requirements for single particle counting.
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Chapter 2

A New Detector for Beam
Monitoring

This chapter gives an overview of scintillator detectors, analyzing scintillating fibre
and microcapillary scintillator characteristics. Such analysis is carried out covering
the theory behind particle detectors, illustrating the effect produced and the basic
reactions that occur when a particle encounters matter and interacts with it along
its propagation path. These processes are the basis of all current particle detection
technologies and, thus, they determine their peculiar characteristics. Finally, in the
last section of this chapter, an explanation of how microcapillary tubes are made
will be given.

2.1 Basic Processes

2.1.1 Energy Loss

The passage of charged particles through matters is generally characterized by an
energy loss and a deflection from the incident initial direction; these effects are the
results of respectively an inelastic collision with the target atomic electrons and an
elastic scattering caused by the presence of the material nuclei.

Out of the two electromagnetic interactions, the inelastic collision is the main
responsible for the energy loss during heavy particles passage through matter. These
collisions are characterized by a transfer of energy from the incident particle to the
target atoms causing an excitation or ionization of the latter; they have a cross
section of σ ' 10−17 ÷ 10−16 cm2 where σ is defined as the effective area which
governs the probability of some scattering or absorption event and is mathematically
calculated as:

σ(E) =
∫
dσ

dΩdΩ (2.1)
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where dΩ is the differential of the scattering solid angle and dσ
dΩ the differential cross

section defined as the ratio
dσ

dΩ(E,Ω) = 1
F

dNs

dΩ (2.2)

with F the incident flux and Ns the average number of particle scattered per unit
time.

The amount of energy transferred in each collision is generally a very small
fraction of the total kinetic energy of the particle; however a substantial energy
loss is observed even in relatively thin layers of target material. For example, a
10MeV proton loses all of its energy in 0.25mm of copper due to the large amount
of particle collisions with the target atoms per unit path length.

Elastic scattering between incident particle and target nuclei occurs frequently
too although not as often as electron collision; however, in general, a small fraction
of the particle total kinetic energy is transferred in these collisions due to the bigger
mass of the nuclei compared to the incident particle.

All collisions are statistical processes, occurring with a certain probability given
by the quantum mechanics’ theory; however, due to the high amount of collisions
per macroscopic path length, the fluctuations in the total energy loss are small and
calculations can be done using the average energy loss per unit path length, also
known as stopping power or dE

dx .
The correct calculation [7] for stopping power using quantum mechanics was

first performed by Hans Albrecht Bethe and Felix Bloch, from whom the analytical
expression takes its name, and was later corrected introducing the density effect and
the shell correction, giving it its final form expressed as:

− dE

dx
= 2πNar

2
emec

2ρ
Z

A

z2

β2

[
ln

(
2meγ

2v2Wmax

I2

)
− 2β2 − δ − 2C

Z

]
(2.3)

with

• re: classical electron radius (2.817× 10−13 cm)

• me: electron mass

• Na: Avogadro’s number (6.022× 1023mol−1)

• I: mean excitation potential

• Z: atomic number of the target material

• A: atomic weight of the target material

• ρ: density of the target material
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• z: charge of the incident particle expressed in units of the elementary charge e

• β = v
c of the incident particle

• γ = 1√
1−β2

• δ: density correction

• C: shell correction

• Wmax: maximum energy transfer in a single collision.

The stopping power dependency from different particles’ energy is shown in figure
2.1 for different materials; from this figure it can be seen that as a incident particle
slows down in matter, its rate of energy loss will change. The graph of the stopping

Figure 2.1. The stopping power dE/dx as a function of the energy of different particles [8].

power expressed as a function of the incident particle penetration depth is shown
in figure 2.2; from this picture called the Bragg curve, the Bragg peak can be seen.
The importance of this peak for radiotherapy can’t be stressed enough: in fact,
in medical application, there is a need to deliver a high dose of radiation to deep-
rooted malignant cells without destroying too much of the coating healthy tissue; by
choosing the incident particles and their energy this peak can be shaped to maximize
the treatment effects on a patient.
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Figure 2.2. A general Bragg curve showing the variation of dE/dx as a function of the
incident particle penetration depth in the target’s matter [9].

2.1.2 Scintillation

Scintillation detection devices are one of the most widely and often used particle
detectors in high energy physics today. This technology is based on the propriety
of certain materials of emitting a small amount of photons, called scintillation,
when they are struck by radiation. Coupling these devices with a photosensor and
an amplifier, the scintillations produced can be converted in electrical signals and
analyzed electronically to obtain information on the interacting particles.

Some of the characteristics required from a good scintillator are represented by
sensitivity to energy, fast time response and pulse shape discrimination.

Sensitivity to energy means that the detector needs to give an output directly
proportional to the deposited energy. Since the photodetectors can be designed to
be linear too, the amplitude of the final signal produced will be proportional to the
energy absorbed by the detector thus giving the possibility to use this device also
for accurate energy measurements. Moreover a short response and recovery time are
needed in order to obtain better timing information, greater precision and higher
count rates compared to other detectors. Pulse shape discrimination can be used to
distinguish between different types of incident particles by analyzing the shape of
the device output light pulses [10]. This result can be achieved using the different
fluorescence mechanisms of the scintillating material contained in the detector.

Some materials exhibit a propriety called fluorescence, meaning that they are
capable of absorbing energy and reemit it in the form of photons. The time needed
in order to absorb the energy and perform an atomic transition is on the order of
10−8s, moving the external atomic electrons to a metastable excited state. The delay
time between the absorption and reemission may last from a few microseconds to
hours depending on the scintillator material considered; thus, adding the delay and
the absorption time, a device time response can be obtained.
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A general characterization of a scintillating detector can be given through four
parameters:

• the efficiency of the detector in converting the incident particles to photons.

• the grade of transparency of the scintillating material to its light in order to
allow the generated light to escape the detector and to be detected by the
coupled photosensors.

• the spectral range of the light emission that needs to be consistent with the
spectral response of the chosen photosensors.

• the response time, given in terms of the decay constant τ . Two or more decay
constants can be associated to a scintillating material.

A wide variety of scintillating materials exists, such as organic and inorganic, gases
and glasses; in this section the attention will be focused on organic scintillators in
order to understand the processes exploited by the studied microcapillary detector.

2.2 Organic Scintillators

Organic scintillators are "aromatic hydrocarbon compounds containing linked or
condensed benzene-ring structures" [9]; they are widely used for their very short
decay time of the order of nanoseconds. In these aggregate, fluorescent radiation
arises from the transitions made by the non-bound valence atomic electrons. These
electrons are in π-molecular orbitals and are not bound to any molecular atom. A
typical energy spectrum for these particles is shown in figure 2.3, where spin singlet
states have been separated from spin triplet states; the energy gap between each
level is on the order of the eV.

When radiation penetrates the material the valence electrons are excited and a
transition to one of the previously shown states occurs. From these states there is a
high probability to make a radiative decay to one of the ground states, thus producing
a number of photons in times on the order of nanoseconds. Thanks to the molecular
nature of the scintillations, these organic materials can be exploited in many physical
forms (i.e. crystals, mixtures of different compounds, liquids and solid forms, etc.)
without loosing their scintillating properties. In the studied microcapillary detectors,
liquid organic scintillators have been used and their qualities will be covered in the
following sections.
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Figure 2.3. Typical energy spectrum of an organic scintillator molecule [11].

2.3 Scintillating fibres

Scintillating fibres are the main detectors that exploit the characteristics explained
in the previous section. In fact, the energy deposited by ionizing particles into
the active detector material is used in order to produce photons; once they are
generated, thanks to a layer refraction index material that surrounds the scintillating
material, these photons are guided to the photodetectors that are used to reveal the
generated light. Alternatively, a thin layer of reflective material can be exploited to
reflect the light through the fibre, allowing for signal transmission. These devices are
multi-purpose detectors (such as calorimeters, time of flight measurement devices,
tracking detectors, trigger counters etc.) and are used in a wide range of physics
research fields [12] [13].

The general structure of an optical waveguide is represented in figure 2.4. The
two indices of refraction for the core and the cladding, respectively n2 and n1, must
minimize the relation given by Snell’s law:

θB = arcsin(n2
n1

); n2 > n1. (2.4)

This request is being made in order to guide the light toward the readout systems
and minimize the flaws given by the dispersion of light as shown in figure 2.5.

A typical configuration of a solid core scintillating fibre is composed by a PS
core surrounded by a PMMA cladding, with an index of refraction respectively of
1.59 and 1.49 [10]. Typical dimensions of the fibres are 0.5 to 1 mm and the total
fraction of light that is guided along the fibre amounts to few percents of the initial
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Figure 2.4. General structure of an optical waveguide used in the construction of scintil-
lating fibres detectors [14].

Figure 2.5. Working principle of an optical fibre waveguide [14].

generated photons. This technique is still a possible choice [15] but it presents a
weak radiation-hardness characteristic and a difficulty of further miniaturization.

A solution to these flaws can be found in liquid scintillator capillaries. In fact, a
glass capillary tube filled with liquid organic scintillator can behave as a scintillating
fibre. This approach exhibits a high radiation-hardness characteristic, given by the
possible circulation of the internal liquid, and an attenuation length of up to 3m,
thanks to the excellent light losses as low as 10−6 per reflection.

Thus, as it has been shown in this section, the final detector efficiency will be
mainly affected by the choice of the scintillating material inside the fibre and its
surrounding cladding or reflector. If during this material selection, the request
of having n2 > n1 is not met, a reflective metal is deposited on the channels to
increase the reflectivity. Moreover, in order to achieve the best detection results, the
wavelength sensitivity peak of the readout system needs to be matched with the
wavelength of the light yielded from the liquid, trying to keep the light reflection
losses as low as possible. A list of possible scintillating organic materials and their
characteristic is shown in figure 2.6. In the prototype studied [1] the microcapillary
channels, filled with the EJ-305 material, have been covered with a thin layer of gold,
due to the poor light guide performance of the two materials, having respectively
n1 = 1.50 and n2 = 0.99.
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Figure 2.6. Possible scintillating organic materials and their characteristics. [16].
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2.4 Microcapillary Scintillators

During the study and the development of an experimental scintillating fibres detector
prototype for the LHC experiment, an upgrade of these devices has been derived by
A. Mapelli [17]. The goal of his doctoral thesis, during which these detectors have
been taken into account, was the fabrication of both scintillating fibres detectors and
a new monitor device that needed to be easy to construct, to have a low material
budget and have a high spatial resolution associated with a high radiation hardness.
The characteristics required for this device derived by the necessity of a zero-degree
calorimeter for feasibility studies at CERN, a beam condition monitoring for CMS
and a better beam monitoring system for hadron facilities such as CNAO, Bern
facility and MedAustron. From the study of the CMS beam radiation monitoring
apparatus, the article [1] and the prototype on which this work is based have been
derived.

The studied microcapillary detector consists of a single microfluidic channel filled
with a liquid scintillator, designed to define a dense array of optically independent
scintillating capillaries with dedicated photodetectors. Such devices allow the easy
manipulation of fluids inside capillaries and give the possibility to circulate and renew
the liquid scintillator, making the active medium of the detector intrinsically radiation
hard; moreover, changing the type of scintillating liquid in the microchannels, the
same device can be used for different types of measurements. This design is based
on the assumption that there is low crosstalk between the different capillaries due
to the right angles being necessary for fluidic circulation at the end of the straight
sections. A schematic representation of the fabricated prototype detector is shown
in figure 2.7.

The preliminary tests made on the microcapillary scintillators yielded a compa-
rable performance of this device to scintillating fibres for thicknesses of the order
of 500µm and some competitive results for thicknesses smaller than 300µm. For
lengths smaller than 100µm, application for online beam monitoring can be envis-
aged having 100% of the beam directed towards the patient, a permanent monitoring
of the radiation received by the patient and a circulation of the scintillator liquid
that grants the needed radiation hardness.

2.5 Microcapillary tubes

The microcapillary tubes on which the studied detector is based represent the main
innovation in this new kind of detector. In fact, thanks to the small size of these
channels, a high spatial resolution can be achieved with a non-destructive effect on
the beam. Conventionally, any channel or tube having hydraulic diameter less than
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Figure 2.7. Schematic representation of the fabricated prototype detector [1].

1 mm is called a microchannel. Thus, fabrication becomes very important in this
field of micro and nano domains. There are various fabrication techniques available
for realizing these micro devices that can be divided into three main categories:
photolithography, additive and subtractive techniques [18].

The photolithography technique consists of selectively removing parts of a thin
photoresist film deposited on a top-oxidized substrate through light irradiation.
Thanks to this process from a transparent mask a geometric pattern is transferred
on the substrate, resulting in the desired microchannel fabrication.

The additive technique is instead a procedure where an either gaseous or liquid
reactant is deposited on the substrate. This material deposition can occur due to
the reaction between the added component and the heated substrate (CVD and
PVD) or due to spin coating where the deposited material is rotated at high speed
resulting in a homogenous spread on the substrate.

Lastly, the subtractive technique consists of etching the substrate, meaning that a
strong acid or mordant is used to transfer onto the unprotected parts of the material
surface a predesigned pattern. Recently, instead of using a chemical etching, beam
of ions, electrons or photons have been used to bombard the material surface and
evaporate the dug material.

The fabrication of the studied detector microchannels starts with the spin coating
for 100 s at 950 rpm of a homogeneous layer of SU-8 [19] [20] [21] with a 200µm
thickness. The SU-8 material is a "negative, epoxy-type, near-UV photoresist based
on EPON SU-8 epoxy resin" [22] that has been developed by IBM. Such material has
a refractive index of the order of n ' 1.6 (fig 2.8 shows n as a function of the incident
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wavelength [23]), a density of ρ = 1.2 g/cm3 and its chemical formula is C22H22O4.
Moreover, SU-8 is a radiation hard material, being used for ions photolithography,

Figure 2.8. Refractive index as a function of the incident wavelength for the SU-8 material.

making it a good candidate for the case studied. From such values the radiation
length can be expressed as:

M0
X0

=
∑Mi

Xi
(2.5)

where M0 and Mi are respectively the total mass of the sample and the mass of the
individual components expressed in g while X0 and Xi represent respectively the
combined radiation length of the sample and the radiation length of the individual
components expressed in g/cm2; such equation yields a value of 41.65 g/cm2 for the
SU-8 material.

The layer of SU-8 is then deposited on a silicon wafer and it is slowly cooled down
at a 4C/min rate, after being baked for 10min at 120C; this fabrication process
has been designed in order to prevent the formation of cracks in the microchannels.
Having achieved this stage, in order to polymerize the coated substrate, this structure
is exposed to UV light at a 500mJ/cm2 dose through a mask followed by a post
exposure bake. Finally, in order to increase optical properties and prevent optical
cross-talk between neighbouring microchannels, the surface of the channels are gold
metallized through a sputtering technique [24]. A schematic representation of the
cross-section of the microchannels at the level of the detection zone can be seen in
figure 2.9 while the results of this procedure are shown in figure 2.10, 2.11 and 2.12.
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Figure 2.9. Schematic representation of the cross-section of the microchannels at the level
of the detection zone [1].

Figure 2.10. Side of a prototype array of SU-8 microchannels as built in 2012, where light
is allowed to be transmitted and detected through the coupled photodetectors.
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Figure 2.11. View of the insertion liquid microcapillary tube of a prototype array of SU-8
microchannels.

Figure 2.12. Top view of a prototype array of SU-8 microchannels.
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2.6 The Detector Characteristics

Having covered in the previous section the theory needed to understand the detector,
in the following part the microcapillary scintillator considered in this work will be
characterized through the calculation of various physical parameters taking into
account the readout system described in chapter four.

2.6.1 The Scintillator Detection Efficiency

The first physical value that can be theoretically calculated in order to give an idea of
the potential of this device is represented by the scintillator detection efficiency; this
value will be derived for a beam of protons with a typical CNAO energy (250MeV

momentum [25] [26]) and subsequently for a minimum ionizing particles (MIP).
The liquid considered for the detection process is the EJ-305 produced by Eljen
Technology.

Considering the Bethe-Bloch equation 2.3 and omitting the density effect and
the shell correction due to their relatively small size for the considered energies, a
stopping power of the liquid

dECNAO/dx = 15.87MeV/cm (2.6)

and
dEMIP /dx = 1.8MeV/cm (2.7)

can be obtained for the two beams.
The depth of a scintillating channel can be considered on the order of 200µm

that, multiplied for the two stopping powers found, yields an energy deposited in
the scintillating material of

∆ECNAO = 0.32MeV (2.8)

and
∆EMIP = 3.6× 10−2MeV. (2.9)

Finally, knowing from the EJ-305 datasheet [27] that every MeV of energy
deposited in the scintillating material generates 12× 103 photons with a wavelength
of approximately 424nm, the total number of photons produced in both cases can be
calculated, obtaining NγCNAO ' 3800 and NγMIP ' 430; from these results a round
number of 2 · 103 γ/mmpermip can be derived for quick approximated calculations.

From this result, assuming that the generated photons are guided in the mi-
crochannels by attenuated total internal reflection [28], the expected photoelectrons
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produced can be expressed as follows [1]:

Npe = Nγ · εcoll · εrefl · εatt · εin · εQeff (2.10)

where Nγ represents the scintillations produced by an interacting proton, εcoll is
the collection efficiency of a rectangular metal-coated microchannel, εrefl the gain
caused by the reflective end of the channel opposite to the photodetector, εatt the
transport efficiency due to optical absorption, εin the transmission efficiency at the
interface between the microchannel and the photodetector and εQeff the quantum
efficiency of the chosen readout system. For the calculations reported in this section,
the previously cited parameters have been kept constant, taking their values from
the prototype used in [1], but considering a different photodetector and varying the
thickness of the scintillating material.

Estimating the efficiency εcoll and εrefl respectively 0.03 and 1.4 through Monte
Carlo simulations [1], omitting εatt due to its large value compared to the small
size of the detector, considering εin to be around 0.99 and knowing the εQeff
of the photodetector to be 0.2 for photons of a 424nm wavelength, an expected
photoelectric yield of approximately 22 and 2.5 is obtained respectively for the
CNAO-like and the MIP beam.

Modelling the interaction between the photodetector and the photodiodes as
a poissonian statistical process, the final detection efficiency εdet defined as the
probability of observing one photon, will be given by one minus the probability of
not detecting any scintillation, that is:

εdet ≈ 1− P (0, Npe) = 1− e−Npe (2.11)

obtaining a 100% and 92% efficiency for the two beams on single photon counting.
Varying the depth of the scintillating channel and the minimum number n of

photons detected by the photodetector per interaction, the graphs 2.13a and 2.13b
have been produced, calculating the detection efficiency as:

εndet ≈ 1−
n−1∑
i=0

P (i,Npe) = 1− e−Npe ·
n−1∑
i=0

N i
pe

i!

 . (2.12)
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(a)

(b)

Figure 2.13. Theoretical detection efficiency of the studied microcapillary scintillator
detecting a CNAO-like (a) and MIP (b) proton beam, varying the depth of the scintillating
channel and the minimum number of photoelectrons needed by the photodetector in
order to reveal the interaction (called threshold in figure).
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Chapter 3

Photosensors

The great diffusion of scintillating detectors for spectroscopy and high energy physics
purposes has increased the usage and improved the technology of photodetectors.
This kind of devices are particularly well designed for the conversion of the scintilla-
tors’ output in electrical signals.

The photodetectors are capable of converting a really weak light signal, typically
constituted by one hundred photons, in an electric signal, easily handled by a
modern readout technology. Furthermore the quantity of current produced is
directly proportional to the amount of light absorbed and the timing information
carried by the photons are reproduced in the electric signal. For such reasons
the photodetectors find a large use in optical spectroscopy, in measurements made
through laser technologies, in astronomy, in high energy physics and in health
applications.

In this chapter the available sensor technologies will be presented with their
strengths and weaknesses in order to understand in which research field each devices
is best suited.

3.1 The Photodiodes

Historically photomultipliers tubes (PMT) have been the first photodetectors de-
signed; despite their diffusion in high energy physics this technology had quantum
efficiency and resolution limitations. The quantum efficiency is defined as:

QE = number of photoelectrons emitted

number of photons absorbed
. (3.1)

For commercial photomultipliers tubes such quantum efficiency assumes a value
between 20 − 40% [29]. With the evolution of photodetectors technology, these
devices have been replaced by photodiodes thanks to the progress made by solid
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state research. These devices have a better quantum efficiency (typically around 80%),
resulting in a better energy resolution; they also have a lower power consumption
and their more compact structure is not affected by strong magnetic fields. Due
to all these qualities the photodiode technology has almost completely replaced
PMT devices in every application field. However, photodiodes have the drawback
of needing a more intense light signal compared to the few photons required by
a common PMT. Furthermore, the current response of a commercial photodiode
requires a preamplifier circuit.

During the experiments made in the course of history, different types of pho-
todiodes have been designed in order to stress some of the previously mentioned
characteristics to the detriment of others; the structural outline of some commercial
photodiodes are shown in figure 3.1.

(a) (b)

(c) (d) (e)

Figure 3.1. Structural outline of some commercial photodiodes [30].

In this section the working principles on which the photodiode technology is
based will be covered; in particular the PN photodiode type will be explained due
to its simplicity and good example of the mechanisms on which this technology is
based.

3.1.1 The PN Photodiode

The PN Photodiode structural outline is shown in figure 3.2a. In this PN junction
the positive layer is a photoelectric converter while the N layer is the a substrate.
The intermediate zone is called depletion layer and the electrons produced in this
area are accelerated due to the presence of an electric field. Varying the dimensions
of these zones and their doping, it is possible to obtain the desired frequency spectral
response of the designed device.

When the photons collide with the active surface of the photodiode, if their



3.1 The Photodiodes 28

(a) (b)

Figure 3.2. Structural outline of a PN Photodiode [30].

energy is greater than the gap energy of the device composing material, the atomic
electrons are excited and some electron-hole pairs are generated (figure 3.2b). Due
to the presence of an electric field in the depletion layer, the electrons are then
accelerated toward the N-type layer while the holes are sped up toward the P-type.
With this technique the P layer is positively charged while the N zone negatively;
thanks to these charges it is possible to extract a weak current proportional to the
incident photons on the device.

3.1.2 The Photodiode Equivalent Circuit and Noise

For the analytic coverage of this device a general outline is needed. One of the most
common model found in literature is given by the equivalent circuit shown in figure
3.3.

Figure 3.3. Equivalent circuit of a PN Photodiode [30].

In this model the various physical parameters represent:

• IL: Current generated by the incident light. It can be analytically expressed
in terms of the sensitivity and the incident photons’ number as:

IL = S ·Nγ · hν (3.2)
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where S is the sensitivity of the photodiode expressed in A/W , Nγ the number
of reacting photons per second, ν their frequency and h the Planck constant.

• ID: Diode current or dark current; in other words it is the current that flows
through the diode when the device is not irradiated by the photons beam.
This current is the main noise term when the device is reversely polarized. Its
analytical expression is given by the Shockley’s law:

ID = IS(exp VD
ηVT

− 1) (3.3)

where IS is the saturation current, VD the potential energy between the two
diode’s ends, η the diffusion coefficient depending on the constituent material
and VT the thermic tension.

• Rs: Series resistance that represent the ohmic junction resistance. In some
photodiodes this resistance is increased by the presence of a high resistance
material, placed in the diode for breakdown protection reasons when the device
is reversely polarized.

• Rsh: Shunt resistance that is generated by the superficial leakage currents.
This resistance is the main noise term when the device is not polarized while
it becomes pretty small when the diode is reversely polarized.

• I ′: Current that flows through the shunt resistance.

• Cj : Junction capacity.

• VD: Diode voltage.

• Io: Output current.

• Vo: Output voltage.

From the equivalent circuit shown it is possible to derive the analytical expression
for the output DC current as a function of the applied voltage, obtaining:

Io = IL − ID − I ′ = IL − Is(exp eVD
kT
− 1)− I ′ (3.4)

where Is is the saturation current, e the electron charge, k the Boltzmann constant
and T the diode temperature expressed in Kelvin.

In figure 3.4 the obtained expression can be seen; it needs to be underlined how
this graph represents the characteristic curve of a normal diode shifted to more
negative current values as the incident light beam intensity increases.
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Figure 3.4. Analytical expression for the photodiode output current as a function of the
applied voltage [30].

The main noise contribution to the photodiode device is given by the p-n junction.
In order to model this noise a low frequency approximation (f < 1

τc
, with τc mean

life of the charge carriers) is used:

< n2
D >= 2qe(ID + 2IS) = 2qeISM2(exp eVD

kT
+ 1) (3.5)

where < n2
D > is expressed in A2/Hz.

3.2 The Avalanche Photodiodes

A photodetector alternative to the photodiodes is represented by the avalanche
photodiodes (APD). This particular type of devices have been designed in order to
read a weak scintillator output without changing the photodiode quantum efficiency;
in fact, as we have seen in the previous section, photodiodes have a higher quantum
efficiency compared to PMTs.

3.2.1 The APD Working Principle

The working principle on which the avalanche photodiodes are based is explained
using the figure 3.5. The structure of this device is similar to the photodiode one
showing two doped zones and a depletion region. The device is highly reversely
polarized in order to diminish the width of the depletion region and to increase
the internal electric field. Thanks to such electric field the generated electrons are
accelerated and a high kinetic energy that lets them ionize the material’s atoms
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Figure 3.5. Structural outline and internal electric field of an avalanche photodiode [31].

is gained; the ionized electrons are then accelerated by the electric field causing
themselves other ionization processes: an avalanche multiplication is therefore
produced. Thanks to this process a current gain is obtained in the device, acquiring
the possibility to detect small amounts of light, comparable to the ones detected by
commercial PMTs. An example of the general characteristic of commercial APD
can be seen in figure 3.6.

Figure 3.6. Structural outline and internal electric field of an avalanche photodiode [32].

3.2.2 The APD Equivalent Circuit and Noise

Analogously to the photodiode technology, a general outline is needed for the analytic
coverage of these devices. One of the most common models found in literature is
given by the equivalent circuit shown in figure 3.7.

In this model the various physical parameters represent:
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Figure 3.7. Equivalent circuit of an avalanche photodiode.

• M · IL: Current generated by the incident light. Compared to the photodiode
generated light it has a multiplying factorM representing the avalanche process,
typically of the order of 50.

• Rt: Differential resistance internal to the diode. It can be expressed as
Rt = δVD/δID where VD is the diode output voltage. It represents the
generation of the dark current ID amplified by the multiplying factor M ;
similarly to the photodiode, the analytical expression of the dark current is
given by the formula:

ID = M · IS(exp VD
ηVT

− 1) (3.6)

whereM ·IS is the saturation current, VD the potential energy between the two
diode’s ends, η the diffusion coefficient depending on the constituent material
and VT the thermic tension.

• Rsh: Shunt resistance that is generated by the superficial leakage currents. It
can be neglected in most of the cases.

• Cj : Junction capacity.

• Rs: Series resistance that represents the ohmic junction resistance.

From this electric circuit the main sources of noise can be derived and represented
in three distinguished elements: the light shot noise, the diode shot noise and the
series resistance thermic noise.

The light shot noise can be analytically express by the equation 3.7.

< n2
L >= 2qeILM2F [A2/Hz] (3.7)



3.3 The Multi-Pixel Photon Counter 33

In this equation M · qe is the minimal charge variation due to the avalanche process,
M · IL the produced current and F the multiplying adimensional factor that takes
into account the 1/f noise.

The diode shot noise can be calculated instead with the following equation:

< n2
D >= 2qeISM2(exp VD

ηVT
+ 1) [A2/Hz] (3.8)

where, similarly to the previous case, M · qe is the minimal charge variation and
M · IS(exp VD

ηVT
+ 1) represents the two currents producing the noise.

The last noise term is the series resistance thermic noise that can be represented
with the equation 3.9.

< n2
S >= 4kBT

RS
[A2/Hz] (3.9)

In this equation kB is the Boltzmann constant, RS the series resistance and T the
temperature expressed in kelvin.

Knowing these three noise terms the total APD noise can be calculated with the
following equation:

< n2
APD >= Σi

1
2π

∫ ∞
0

< n2
i > |Hi(jω)|2dω [A2] (3.10)

where < n2
i > are the different noise contributes and Hi(jω) the device’s transfer

function.

3.3 The Multi-Pixel Photon Counter

The last photosensor that will be covered in this chapter is represented by the
Multi-Pixel Photon Counter. MPPCs are new devices designed to count single
incident photons. They are based on the previously explained APD detectors placed
in parallel but working in geiger mode. An APD working in geiger mode is defined
as an avalanche photodiode reversely polarized with a tension greater than its
breakdown threshold; in this way the device gain increases to values around 105−106

losing its linearity and therefore becoming capable of detecting only a single photon.
For such reason the APD working in geiger mode are shortly called Single Photon
Avalanche Diodes or SPAD.

3.3.1 The MPPC Operating Principles

As in the avalanche photodiodes theory, due to the collision between the incident
photon and the active surface of the device, one or more electrons are generated
and accelerated by a strong electric field. Thanks to this strong acceleration the
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generated electrons can start the avalanche process. Due to the presence of an
electric field, a sudden flow of current through the device is triggered, with delays of
the order of the ns, at a stable current of the order of 10µA. This process is called
Geiger discharge. Due to charge fluctuations in the depletion zone, if the breakdown
current is limited by a resistance, the device has a high probability to fall in a
metastable interdiction state, stopping the current flow (this phenomenon is called
quenching). The photon interaction with the device surface therefore produces the
starting avalanche electron that causes a pulse generation, indicating the interaction
time. Placing more SPAD in parallel (figure 3.8) and measuring the output current,
it is possible to know how many devices fired and consequently how many photons
have been collected.

Figure 3.8. Structural outline of a MPPC [33].

3.3.2 The MPPC Equivalent Circuit and Its Noise Sources

Analogously to the other cases, an analytical treatment of these devices is needed.
In order to do so the equivalent circuit shown in figure 3.9 is usually used.

In this model the elements of the circuit represent the following aspects of the
device:

• Vs: Supply voltage which is usually set around 70V .

• VB: Breakdown voltage which usually equals 69V .

• RL: Load resistance that is responsible of the quenching process.

• Rs: Matching resistance; it is used in order to match the output impedance,
typically of the order of 50Ω.
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Figure 3.9. Equivalent circuit of a MPPC.

• Rd: Series resistance that represent the ohmic diode junction resistance.

• Cj : Junction capacity.

• Cp: Parasitic capacity.

Having defined these variables, the MPPC’s working process can be characterized
by three physical parameters: the quenching current, the quenching period and
the restoring period. The quenching current is defined as the current threshold
after which the restoring period can start. The quenching period is determined
as the time interval during which the MPPC can not reveal any other interacting
photon. Finally the restoring period is defined as the time interval spent by the
device reverting its tension to the initial value Vs. An image of a typical progress of
these three parameters is shown in figure 3.10.

In literature, since the MPPCs have a large gain, instead of being described
through a current noise analysis, this kind of devices are more often characterized by
a spurious counts study. Spurious counts can derive from five different contributes:
the statistical counting uncertainty, the dark current extra counts, the cross-talk
phenomenon, all the incident photons that are not counted and the afterpulse
contribute.

The statistical counting uncertainty comes from the probabilistic nature of the
interaction between the incident photons and the device’s surface. These interactions
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Figure 3.10. Typical progress of a MPPC device [33] where the current is expressed in
0.5mA/div and the voltage in 0.5V/div .

can be modelled as a Poissonian process, giving a mean variation of:

σstat ∝
√
Ncount (3.11)

where Ncount is the number of photons counted.
The dark currents extra counts are generated by the thermoelectric charges

produced by the APD pixel leakage current that can start an avalanche process.
The value for these extra counts is usually written in the device’s datasheet and has
often a value of the order of 100 kcps.

The cross-talk phenomenon between different pixels can generate some other
extra counts. One of the causes of this process is due to the second electron emission
of the activated APD.

The charges generated from the interaction between the photons and the surface
of the device can sometimes remain trapped in the depletion region impurities and
escape from it during the APD interdiction state, reactivating it. This additional
counts are often called afterpulses.

The last spurious counts contribution is given by the nonlinearity of the device;
in fact, being the APDs only capable of detecting single photons, if a MPPC detects
two photons that simultaneously impact the same cell, a wrong photons count will
be yielded. The proportion between the activated SPADs and the incident photons



3.4 Detectors Readout 37

will therefore be given by:

Nfired = Ntot[1− exp−
Nph·P DE

Ntot ] (3.12)

where Nfired is the number of SPADs activated, Ntot the total number of SPADs,
Nph the number of photons in the beam, and PDE is the photodiode efficiency. In
figure 3.11 multiple parameters of some commercial MPPCs are shown.

Figure 3.11. Table of parameters of some commercial MPPC [34].

3.4 Detectors Readout

Since microcapillary scintillators are being designed for both hadrotherapy and high
energy experiments, they need to be readout by different photodetectors, depending
on the requests of each experiment. In fact, using a MPPC readout, these devices
could be used, for example, as single particle trackers or time flight measurement
systems; such a choice would be lead by interactions that these devices can detect
a signal generated by just a few photons. In other experiments instead, where the
time integration of a large number of particles is needed, the designer choice would
probably end up on the photodiode technology; examples of such applications could
derive from a beam profile or dosimetry monitoring system.

In this master thesis work, a photodiode array readout technology has been chosen
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to investigate the beam monitoring capability of the detector. Other readout systems
are being studied in order to realize a detector suitable for all the cases previously
explained. In the next chapter the electronics developed for the photodiode array
readout technology will be discussed together with the first results obtained.
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Chapter 4

The Photodiode Readout

In this chapter the photodiode array readout system structure will be discussed
in detail. The system shown has been built in order to manipulate the scintillator
output signal and convert it into physical data statistically analyzable.

4.1 System Requirements and Specifications

The readout system described in this chapter has been realized having in mind
well-defined requirements. Since the studied detector has been conceived as a multi
purpose device, the readout system needed to be designed as versatile as possible.
In particular, the working frequencies needed to be easily varied in order to quickly
adapt the monitor system to different kind of beams. The developed device has
therefore been realized with the following technical specifications:

Parameter Value Units
fphDet 40÷ 2000 kHz
fadc 40 MHz

nBit(ADC) 14 Bit
Integration Time 0.5÷ 1, 64 · 106 µs

Input Voltage 4.8 V
FIFO Length 2056 32bits words

Ethernet based control and readout (Gigabit Ethernet)

where fadc is the frequency of the adc clock, fphDet is the frequency of the photode-
tector clock and nBit(ADC) the number of bits used by the ADC to digitalize the
data.
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4.2 A General Overview

The front end electronics, assembled for the studied microcapillary scintillators, is
capable of converting light in an electronic signal, by sampling the analog stream
from the photodiode array with a high resolution 14− bit ADC. Having formatted
the digital signal into a pre-established format, the final data is then sent through
an ethernet network to a storage system. A block diagram of the system is shown in
figure 4.1.

Figure 4.1. Logical outline of the operations made on the microcapillary detector output.

As it can be seen from the picture above, the first operation to be made is the
conversion of the light produced by the scintillator into a digital signal through a
photodetector and an ADC. Such conversion needs to be synchronized with the
readout internal clock and its integration time needs to be programmable, in order
to fulfil the versatility requirement. The readout system chosen is a photodiode
array that will be described in detail in the next section. The analog signal produced
is then digitized. The analog to digital conversion is performed by an ADC that
serially sends its output to a deserializer contained in the Logic Control Unit. Having
digitally obtained the measurement, a final data is composed, formatting the data
in a form that will be shown in section 4.2.5. Having achieved this stage, the word
is then sent to a microprocessor through a two FIFOs system controlled by a finite
state machine (FSM). Afterwards, the microprocessor encapsulates the received data
in a UDP message and sends the final message to a computer interfaced through an
ethernet network. The structure and the working mode of each device used in this
data processing flow will be covered in the upcoming sections.

4.2.1 The Photodiode Array

The photosensor chosen is the amplified photodiode array S8865 and its driver circuit
C9118, commercialized by the Hamamatsu Photonics company. These photodetectors
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are Si photodiode arrays with a combined signal processing IC chip. Such chip is in
CMOS technology and incorporates a timing generator, a shift register, a charge
amplifier array and a clamp and hold circuit, making the external configuration
simple. Using the appropriate driver circuit, it is possible to arrange multiple arrays
in a row in order to configure a long image sensor. This photodiode array has
been chosen for its simplicity, reliability and low cost. The spectral response of this
device is shown in figure 4.2 while its timing chart in figure 4.3 and its driver circuit
diagram in figure 4.4.

Figure 4.2. Spectral response of the S8865 photodiode array [35].

Figure 4.3. C9118 driver circuit timing chart [36].

As it can be seen from fig 4.2, the photosensitivity peak does not match exactly
the input light wavelength of 424nm of this scintillator. Due to such mismatching,
a different photodetector would be needed to achieve better performances. How-
ever, during the development period in which this work has been carried out, the
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Figure 4.4. C9118 driver circuit block diagram [36].

Hamamatsu photodiode arrays were the best photodetectors available to our group.
During the data acquisition process, two different photodiode arrays of the S8865

family have been used. In particular, the S8865-128 and the S8865-256 have been
mounted one at a time on the readout system. In order to calculate the signal to
noise ratio and give an estimate of the quality of the readout system, the signal
photodiode amplitude has been calculated for different types of light input; this
physical parameter can be mathematically expressed as:

Vsig = kSFpNpeAchhνTint
Apde

(4.1)

where

• k is a constant equal to 13.66 cd/W

• S represents the photodetector photosensitivity

• Fp stands for the incident beam flux

• Npe is the expected photoelectrons produced by a single particle

• Ach represents the cross section of a microcapillary channel
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• h stands for the Planck constant

• ν is the scintillations’ frequency

• Tint represents the photodetector integration time

• Apd stands for the surface of the photodetector window

• e is the electron elementary charge.

Taking the photosensitivity value from the S8865-128 photodiodes data sheet
[35], considering a CNAO-like particle beam with a flux of Fp = 0.25× 1014 particles
m−2s−1 and assuming an expected photon number of 22 and 2.5 respectively for
a 250Mev and a MIP protons (such numbers have been derived in section 2.6.1
for a thickness of 200µm), a cross section channel of 5× 10−7m2, a photodetector
surface of 1.8× 10−7m2 and an integration time of 100ms, a signal amplitude of
approximately 737mV and 84mV is obtained.

In general, a value of approximately 0.35µV/mip can be derived for this particular
scintillator-photodetector system for a thickness of 200µm. Moreover, in the data
sheet [35] a value of 0.01mV/ms for the dark output voltage per integration time is
reported. Therefore, the number of photons that can be distinguished from the dark
current by the photodiode can be derived. In particular, considering an integration
time of 1ms and knowing that each photon generates a signal output of the order
of 0.10µV , the lower boundary results in a value less than 100 photons. From such
result, it can be said that the dark contribute is negligible compared to the measured
data taken during the tests described in chapter 5, since they typically are two order
of magnitude greater.

4.2.2 The ADC

The analog-to-digital converter chosen for this work is the ADS7946 device, produced
by the Texas Instruments company. The ADS7946 is a 14-bit analog-to-digital
converter, with unipolar inputs. The device operates at a 2 MSPS sample rate with
a standard 16-clock data frame and it features a sufficient dc precision and dynamic
performance. This device includes a two-channel input multiplexer and a low-power
successive approximation register (SAR) ADC with an inherent sample-and-hold
(S/H) input stage. The ADS7946 support a wide analog supply range that allows the
full-scale input range to extend to 4.8V single-ended and has an automatic power-
down feature that can be enabled when operating at slower speeds to reduce power
consumption. A simple Serial Peripheral Interface Bus (SPI), with a digital supply
that can operate as low as 1.65V , allows for an easy interfacing to a wide variety
of digital controllers. This device has been chosen as a good compromise between
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its cost and performance. The ADS7946 time and block diagram are respectively
shown in figure 4.6 and 4.5.

Figure 4.5. ADS7946 block diagram [37].

Figure 4.6. ADS7946 timing diagram [37].

4.2.3 The FPGA Board

The FPGA used in the development of the front end electronics is the Virtex-5
LXT ML505 evaluation platform produced by the Xilinx company and, as the name
suggests, it is based on the Virtex-5 technology. The device is a general purpose
FPGA development board with a good balance of high-performance logic, serial
connectivity, signal processing, and embedded processing resources. It provides
a feature-rich general purpose evaluation and development platform, including
on-board memory and industry standard connectivity interfaces and delivering
a versatile development framework for embedded applications. In particular, in
addition to the embedded RISC processor blocks, integrated system-level hard-IP
blocks for Peripheral Component Interconnect Express (PCIe), Tri-mode Ethernet,
and advanced high-speed RocketIO GTP and GTX serial transceivers are also
provided through the Virtex-5 FPGA family. A block diagram and a picture of the
board can be seen respectively in fig 4.7 and 4.8.
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Figure 4.7. Picture of a Xilinx Virtex-5 LXT ML505 board [38].
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Figure 4.8. Picture of a Xilinx Virtex-5 LXT ML505 board [38].



4.2 A General Overview 47

4.2.4 The Readout Architecture

The ML505 board has been divided in multiple entities programmed with the Xilinx
software suits ISE and EDK. The architecture implemented into the FPGA board is
shown in figure 4.9.

Figure 4.9. Outline of the entities contained in the FPGA [39].

In this scheme, the MicroBlaze CPU is a soft RISC processor core specifically
designed for Xilinx FPGAs and implemented entirely in their general-purpose memory
and logic fabric. Such block controls the entire board, decoding the UDP packets
received from an interfaced computer and sending the decoded commands to the
other entities. A 1GB external memory has been attached to this microprocessor to
save and restore the FPGA initial configuration parameters and the software.

The TEMAC logic block, instead, interfaces the FPGA logic to the ethernet
network and uses the same common bus, used to connect the CPU to the different
ports (i.e. ethernet, usb, sata etc.). TEMAC is an acronym for Tri-Mode Ethernet
Media Access Controller and is a reference to the three speed (10, 100, and 1000
Mb/s) capable Ethernet MAC function available in this core.

The FPGA also contains an RS-232 serial port, allowing the board to commu-
nicate with a terminal. A null modem cable is normally required to connect the
board to the serial port on a computer. Such serial port is designed to operate up
to 230400Bd and an interface chip is exploited in order to shift the voltage level
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between FPGA and RS-232 signals.
The data packets are transmitted between the logic blocks through three FIFOs:

one placed between the data bus and the TEMAC and two placed between the local
bus and the readout logic unit; the motivation for this design structure will be given
in the upcoming sections.

Finally, the logic control block manages the ADC and the photodiode physical
devices through the generation of their control signals; the structure of this last logic
block will be discussed in section 4.4.

4.2.5 The Readout and Control Protocol

The front end electronics has been connected to a computer through an ethernet
network in order to control it and send out and analyze the collected data. In order
to obtain such feature, a readout and control protocol was needed. Such system
allow a parameters and commands exchange between the two interfaced devices. In
particular, network and specific board parameters as well as reading and writing
commands are needed to be transmitted through the network.

In order to establish the communication protocol, all the devices involved in
the communication process need to have some parameters defined in order to
communicate. Such parameters are the following:

• The remote MAC address: such MAC is needed by the readout node when is
asked to send the measured datas to the interfaced computer.

• The remote IP address: it is the IP at which the data are sent by the readout
node.

• The local MAC address: the first four bytes of this address are fixed to the
hexadecimal values of 00 : 0a : 35 : 01 while the last two can be set through
the eight general-purpose active-high DIP switches present on the board.

• The local IP address: this IP is needed by the computer in order to know at
which address to send the commands. Currently such address is manually
associated to the FPGA MAC address through a terminal arp command. In
the future, the board will be modified to avoid such manual process.

• The communication port number : it is the port through which the computer
and the board communicate.

Moreover, having established the communication protocol, the board also needs
to know other three parameters: the integration time, expressed in number of
photodetector clock periods, and the frequency of the adc and photodetector clocks,
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both expressed in number of divisions of the 250MHz FPGA clock. All these
parameters, together with other monitoring information, can be accessed through
an addressing scheme that manages a node and a board space:

• Node Space: composed by five registers that contain the information needed
for the communication processes. In particular, there is a register for each of
the five parameters previously described and one for storing the packets flags,
fragment offset and time to live.

• Board Space: composed by four 32 but registers that can be externally read
and written and additional four that are read only. The first four registers
contain the readout parameters that the system uses during the data taking
process while the last four contain different internal flags of the readout system,
used for monitoring purposes

After configuring all these registers, an acquisition data run can be started (all the
board internal registers can be read and written through the dedicated commands).
All these communication processes occur thanks to the User Datagram Protocol
(UDP).

The UDP packets, called frames, have been formatted in a predetermined form,
understood by both the board microprocessor and the interfaced computer software.
A general ethernet IP UDP frame is divided into three parts: the frame header, the
frame payload and the frame footer. The frame header is subsequently divided in
other seven parts as shown in figure 4.10:

• The preamble: composed by seven bytes of the value of 10101010. It is used
to communicate to the receiving parts that the transmission has started and
to synchronize the network clocks.

• The start frame delimiter (SFD): constituted by one byte of the value of
10101011 indicating the following transmission of important data.

• The Destination MAC address: formed by six bytes containing the destination
LAN MAC address of the frame. If the address does not correspond to any
machine in the network the frame is discarded.

• The source mac address: composed by six bytes containing the sender LAN
MAC address.

• The payload length: constituted by two bytes indicating the length of the
following payload.
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• The payload: formed by a variable number of bytes from a minimum of 46 up
to 1500 containing the actual data needed to be transmitted. If the message
sent is bigger than the maximum 1500 bytes, the frame is divided in multiple
smaller packets. Otherwise, if the message is smaller than 46 bytes a padding
is added in order to reach the minimum length.

• The frame check sequence (FCS): composed by four bytes, it is used for
transmission error checking.

Figure 4.10. Subdivision of the ethernet UDP header. All the numbers represent the
length of each frame subdivision expressed in bytes. [39].

Further on, the packet’s payload part is divided in a substantial number of parts
formatted in a standard way; such subdivision is shown in figure 4.11.

Figure 4.11. Subdivision of the ethernet UDP frame [39].

The only non standard formatted part of this specific subdivision is represented
by the data payload type, contained in the data header, and the data payload,
contained in the UDP payload. The data header type contains one of the words
shown in figure 4.12; if a command word is inserted in this part, the data payload
will be empty while, if some other parameters are inserted, the data payload will
contain the specification of the written word.
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Figure 4.12. Format of the possible words contained in the data header type [39].

The data payload has been formatted in a similar way in order to make the
MicroBlaze understand the messages sent and access the board internal registers.
Finally the data packet structure has been formatted as shown if figure 4.13. The
information contained in such part of the UDP packet can report the acquisition
running ID, a footer representing the end of the packet or the measured data of a
photodiode channel; these are the data that will be analyzed in order to understand
the physical processes detected.

4.3 Simulation

The firmware of the FPGA has been written in VHDL. VHDL is an acronym for Very-
high-speed integrated circuits Hardware Description Language, originally developed
at the behest of the U.S Department of Defense. Such programming language is
used in electronic design automation to describe digital and mixed-signal systems.

The first step taken in the coding process of the board logic is represented by
the simulation of the physical devices, namely the photodiode array and the adc.
During this stage, the digital emulation of the devices inputs processing has been
coded. The entity that simulates the ADC behaviour is a stand alone logic block
while the photodiode array simulation entity is composed of two logical blocks; one
is exploited to produce a pseudorandom series of natural numbers representing the
measured datas, while the other generates and controls the output signals. The
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Figure 4.13. Format of the data packet structure containing the physical data that need
to be analyzed [39].

structural outline of these two logic circuits is shown in figure 4.14 and 4.15.

Figure 4.14. Structural outline of the entity coded for the photodiode array simulation.

4.3.1 Linear feedback shift register

The logic block written for the pseudorandom generation of a series of natural
numbers has been coded following the linear feedback shift register technique; such
technique is based on the lagged Fibonacci generators [40]. The algorithm has been
chosen for its easy circuital implementation, being possible to realize it only with a
shift register and some binary operators.

The lagged Fibonacci generator method takes his name from the Fibonacci series
from which it has been derived; this series can be expressed through the recurrence
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Figure 4.15. Structural outline of the entity coded for the adc simulation.

relation:
Sn = Sn−1 + Sn−2 (4.2)

from which the generalization of the generators:

Sn = Sn−j ∗ Sn−k (mod m), 0 < j < k < n (4.3)

where m is usually a multiple of two (i.e. m = 2M ), the variable M ,n,j e k are
natural numbers and ∗ is a binary operator; like all pseudorandom number generators
the series obtained is periodic, with a period dependent on the initial seed and
the binary operator chosen. The linear feedback shift register are based on such
generators; they are constituted by a shifter register, having in input a function of
its internal flip-flops values. In particular the coded linear feedback shift register
has been realized with a shift register described by the following equation:

B0 = B13 ⊕B12, t > t0

B13 = 1, Bi = 0, ∀i = 0, 1, 2...12, t = t0
(4.4)

where Bi is the i-th bit of the shift register and ⊕ the exclusive or binary operator.
The minimal shift register length required and the bit on which the operator acts
have been chosen based on the 14-bit adc resolution, keeping the circuit as simple as
possible. A graphical representation of this entity is shown in figure 4.16 while its
code has been reported in appendix A.1.

Figure 4.16. Graphical representation of the linear feedback shift register used at t = t0.
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4.3.2 The Photodiode Array Simulation

As previously stated in section 4.2.1, the photodetector used in this system is the
S8865 photodiode array, commercialized by the Hamamatsu Photonics company.
In order to simulate this device an entity sensible to the input clock rising edge
has been coded. Such logic block counts the number of rising edges, subsequently
to having received a starting trigger signal sent by the logic control unit. Having
implemented this part, the code for the output generation has been written. The
entity emulates the output of the physical circuit using the pseudorandom number
generator logic block previously described. The timing diagram of this device and
its simulation are shown in figure 4.17, while the code has been reported in the
appendix A.1.

Figure 4.17. Timing diagram of the photodiode array and its related simulation.

4.3.3 The ADC Simulation

The Texas Instruments ADS7945 adc circuit has been simulated through the code
written in the appendix A.2. In this logical block the FPGA has been programmed
to set the output pin sdo equals to the (13− n)-th bit at every input clock rising
edge, where n is the number of edges counted. The transmissionTime output that is
shown in the block diagram in figure 4.15, has been implemented in order to see the
effective conversion time of the adc and to monitor more precisely the device. The
timing diagram and the simulation of this logical block are shown in figure 4.18.
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Figure 4.18. Timing diagram of the adc and its related simulation.

4.4 The FPGA Logic

The FPGA logic has the goal of deserializing the adc output, formatting the data
into a pre-established form, sending it to the external fifo and monitoring all the
photodiode and adc control signals. This logic block is subdivided into five entities:
the deserializer, the clock divider,the internal fifo, the finite state machine and the
logic control unit. The latter entity is additionally formed by other two logic blocks:
the clock and the trigger analyzers. The general outline of the FPGA logic is shown
in figure 4.19 and in the following sections each logic subdivision will be covered in
detail.

4.4.1 The Deserializer

As suggested by its name, the deserializer entity aims at converting the serial adc
output into a 16-bits word that is sent to the logic control unit. The schematic block
of such entity is shown in figure 4.20. The deserializer is synchronous with respect
to the adc, being both devices controlled by the same clock. When an adc clock
rising edge is detected by the deserializer, if the datain port equals 1, the internal
outputInteger signal is set equals to:

outputInteger = outputInteger + 2width−3−n (4.5)

where the variable width equals 16 representing the word length. As previously seen
in the section 4.2.2, the adc produces a 14-bits serial data stream; therefore, when
the deserializer has counted 14 clock rising edges, the dataout port is set to the value
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Figure 4.19. Schematic circuit diagram of the entity coded for the adc simulation working
at 250MHz.

Figure 4.20. Schematic circuit diagram of the deserializer entity.
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of ”00” + outputInteger and rises the ready flag in order to communicate to the
logic control unit that the word is ready and can be formatted. The timing diagram
simulation of this device is shown in figure 4.21.

Figure 4.21. Timing simulation of the deserializer entity.

4.4.2 The Clock Divider

The clock divider entity has been created in order to generate the adc and photodiode
clocks with the same phase of the fpga clock. The constraints of these two clocks
are given by the hardware specification. In particular, the adc clock frequency must
be lower than 40Mhz while the photodiode one must be lower than 2Mhz. The
only other constraint given by the structure of the readout system is:

Tphoto > 32Tadc + 80ns (4.6)

where the Tphoto is the photodiode clock period and Tadc the adc’s. Giving the fact
that the analogic signal can be sampled only during the photodiode trigger signal,
the previously stated constraint is generated by the adc need of having at least eighty
ns for the signal acquisition and sixteen clock periods to sample the photodiode
video output. The considered logic block is sensitive to the fpga rising edge and it
takes as an input a divisor integer, made up of lengthDivisor bits, which is an entity’s
parameter. The schematic circuit of this block is shown in figure 4.22. Starting

Figure 4.22. Schematic circuit diagram of the clock divider entity.
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from one and counting up to divisor/2 the first time and to divisor− divisor/2 the
second time, the clkOut output port is set equals to:

clkOut = NOT (clkOut). (4.7)

Such differentiation between the two clock phases has been made in order to allow
the entity to take odd number as divisor integers. Finally, the timing diagram
simulation of the clock divider is shown in figure 4.23.

Figure 4.23. Timing simulation of the clock divider entity.

4.4.3 The Internal Fifo

A system of two FIFOs, one internal and one external with respect to the FPGA
logic entity, has been chosen due to the limited storage capacity of the external one
and due to the incapacity of the internal FIFO of interacting with the FPGA’s BUS.
The latter logic block has been realized using the ISE IP generation wizard instead
of manually coding it in order to speed up the development process.

The external FIFO, embedded in the FPGA, has a length of 512 words of 32-bits
each and is driven by the 125Mhz BUS clock. The internal FIFO, instead, has a
length of 2048 words of 32-bits each with two different writing and reading clocks;
the former is driven by the 250Mhz FPGA clock while the latter by the 125Mhz

BUS clock. This FIFO has been also programmed with an almost full flag activated
when it’s filled more than two-thirds of its whole length. The schematic circuit of
this block is shown in figure 4.24.

4.4.4 The Finite State Machine

Once the structure of two FIFOs has been chosen, a machine capable of handling
this system has been needed. Such entity is a simple machine that checks if the
external FIFO is full and the internal FIFO empty. If one of these two conditions
are met during the FPGA clock rising edge the rd_en output port is set to zero, in
all the other cases to one. The VHDL code written for this logic block is reported
in appendix A.3 while the schematic block in figure 4.25.
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Figure 4.24. Schematic circuit diagram of the internal FIFO entity generated through the
ISE wizard.

Figure 4.25. Schematic circuit diagram of the finite state machine logic block.
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4.4.5 The Logic Control Unit

The logic control unit entity is the most important and advanced entity of the
FPGA logic part. The aim of such logic block is the formatting of the data, their
transmission through the network and the handling of the control signals of the
whole detector front end electronics. The logic block additionnally includes two
entities used to sample the adc clock, the photodiode clock, the external trigger
and the photodiode trigger. The clock analyzer logic entity sends out a short pulse,
lasting one 250MHz clock period, on the rising port when the input clock rising
edge is detected; similarly the trigger analyzer entity sends out a spike when the
input clock rising or falling edges are detected respectively on the rising and falling
output ports. Their schematic and time simulation diagrams are shown respectively
in figure 4.26, 4.27, 4.28 and 4.29.

Figure 4.26. Schematic circuit diagram of the clock analyzer logic block.

Figure 4.27. Simulation time diagram of the clock analyzer entity.

Having sampled the four stimuli, the logic control unit can control the whole
system. When it’s turned on by setting its rst_n port to the higher logical level,
the entity waits for an external trigger. Once this external trigger has arrived, the
control logic sends the trigger counting word to the internal FIFO and activates the
photodiodeStart output, setting it to one, for a period lasting:

Tint = n · Tphoto (4.8)

where the Tint is the integration time (i.e. the time during which the photodiodeStart
needs to stay equals to one), Tphoto the period of the photodiode clock and n a value
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Figure 4.28. Schematic circuit diagram of the trigger analyzer logic block.

Figure 4.29. Simulation time diagram of the trigger analyzer entity.

passed to the entity by the integTime port. Having given the start signal to the
photodiode, a trigger input is then awaited in order to start the adc conversion, setting
the adcStart to zero. The adc start signal needs to stay in the zero state for sixteen
adc rising edges counted by the logic control unit through the previously described
clock analyzer block. The same process is repeated when the trigger falls, in order to
measurement the pedestal of the apparatus. As previously described, when the adc
edges counter equals fourteen, a flag is set to one on the dataReadyFromDeserializer
port by the deserializer entity, signalling that the word on the datain port is ready
to be sent to the internal FIFO. The whole control process is repeated until the
Ham_Eos input equals zero, meaning that the photodiode has sent all its channel
datas and that the logic control unit can wait for another external trigger. The VHDL
code written for this logic block is reported in appendix A.3 while the schematic
block in figure 4.30 and its time simulation in figure 4.31.
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Figure 4.30. Schematic circuit diagram of the logic control unit entity.
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Figure 4.31. Time simulation diagram of the logic control unit entity.
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Chapter 5

Laboratory Tests

In this chapter the main tests made on the developed device will be covered. Specifi-
cally, a general overview of the test setup will be given in the first section, followed
by some physics calculation on the expected measurements and finally showing the
debugging procedures adopted.

5.1 Laboratory Test Setup

5.1.1 Equipment

The laboratory setup, where most of the tests were made, was composed by:

• A computer running Windows XP. This machine has been used to load the
firmware and the software inside the FPGA. Such operating system was needed
in order to run the Xilinx proprietary software.

• A laptop running Unix. This machine has been used in order to run the custom
developed Graphical User Interface and to acquire and elaborate the datas
produced by the board.

• The acquisition Board containing a custom interface board with a 2MHz

sampling rate, 14 SAR ADC that samples the photodiode video signal.

• A pulsed led with a variable pulse frequency. This device has been used to illu-
minate the photodiode array and to perform some preliminary measurements.

• A PVC box containing the photodiode array and the led. A picture of such
box is shown in figure 5.1.

• An oscilloscope used to monitor the board input and output signals.

• A router in order to link all the devices through a Gigabit ethernet network.
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A picture of the laboratory setup is shown in figure 5.2.

Figure 5.1. Box containing the photodiode array and the pulsed led.

5.1.2 The Graphical User Interface

In order to interact with the board and monitor its activity, a graphical user interface
has also been developed. The GUI is a java application capable of sending and
receiving UDP or TCP messages through an ethernet network; the main window
of such application is displayed in figure 5.3. The interfacing application had a
fundamental role during the testing and debugging board processes, allowing writing
and reading operations on the board internal registers.

5.2 Expected Performances

In order to properly debug the readout system, a theoretical calculation of the
expected measurements was needed. Taking the specifics of the EPLED360 pulsed
UV-LED produced by the Laser2000 company, the number of photons detected
by the photodiode array was estimated. The EPLED360 is a pulsed led capable of
generating calibrated light pulses of 700 ps width at programmable frequencies less
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Figure 5.2. Picture of the laboratory setup where most of the tests were made.

Figure 5.3. Main window of the GUI application.
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than 10MHz. Each pulse delivers 0.8µW of power on a spot of 123mm2 of size.
The number of photons reaching the photodiode array can be expressed as:

nphγ = Tint · fled · npulγ · (
APA
ALB

) (5.1)

where nphγ is the total number of photons detected during every photodiode measure-
mentment, Tint is the integration time of the photodetector, fled is the frequency of
the LED pulses, npulγ is the number of photons in a single pulse and APA/ALB is
the ratio between the area of the photodiodes irradiated and the area covered by
the LED beam. Such equation can be further expanded knowing that

npulγ = Pled · Tpul
hνγ

(5.2)

where Pled is the power generated by the EPLED per pulse, Tpul the average time
interval of each pulse, h the Planck constant and νγ = 833THz the frequency
of photons generated. The number of photons per pulse yielded is npulγ ' 1014.
Knowing most of these values from the EPLED and photodiode data sheets [41] [36]
a nphγ ' 1.8 · 105 is yielded, using Tint = 1ms, fled = 10MHz and APA = 2.24mm2.
Finally, having derived the conversion factor between the number of detected photons
and the signal generated by the amplified photodetector, an estimate of the expected
measured datas can be derived. Such conversion factor has been calculated by
measuring the output voltage of the integrated light and dividing it for the number
of photons detected. The analytical relation between these two values can be
expressed as:

Vdata = Knphγ = KTint · fled ·
Pled · Tpul
hνγ

· (APA
ALB

) (5.3)

where Vdata is the photodetector output signal, nphγ the total number of photons
detected and K the conversion factor of about 50µV extrapolated from the mea-
surements.

5.3 Debugging Procedures

The first test done in order to debug the readout system was the development of
a testing mode for the fpga logic. In this mode, enabled through a bit of a board
register, the logic sends only the header and the footer of each trigger, avoiding the
transmission of the measured data. Thanks to such feature, the two FIFO memories
have been tested without the rest of the readout chain, allowing a first interface
between the board and the GUI. A time simulation representing a test mode run
can be seen in figure 5.4.
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Figure 5.4. Time test simulation diagram of the whole logic entity.
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Having received on the computer the first packets containing the headers and
footers, the board output signals have been checked through an oscilloscope; an
image of these signals can be seen in figure 5.5.

In particular, this figure 5.5 pictures the timing between the ADC and photode-
tector signals, an ADC conversion period and the beginning of a data acquisition
run. In order to acquire such image, a time integration of 48µs, a photodetector
frequency of 250 kHz, and an ADC frequency of 35MHz have been used. From the
picture the signals simulated during the process described in part 4.4.5 can be seen.

Finally, the EPLED has been mounted onto the box where the photodetector
were placed, the readout board was connected to the photodiodes and the first data
acquisition test has been run. The result of such procedure can be seen in figure
5.6 where the output signal of the photodiode array illuminated by the LED and
the serial data output of the used ADC are represented. In this measurement a 3
mm hole is used to limit the light emitted by the led, illuminating approximately 4
pixels in accordance with a pitch size of 0.8 mm.

Thanks to these procedures a considerable amount of problems were solved. As
a first step, problems regarding the logic and the synchronisation of the two FIFOs
have been solved modifying the FPGA firmware. Moreover, different circuit assembly
errors were detected, measuring the output signals through the oscilloscope. Such
errors were solved analyzing the device pins’ solderings and their routing through a
microscope. Finally, measuring subsequents data taking runs, multiple errors have
been solved on both the software and firmware behaviour, time synchronisation and
the FPGA interface with the computer. Having tested the correct functioning of the
whole readout system, a characterization of such device has been undertaken; such
process is described in the following chapter.
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(a)

(b)

(c)

Figure 5.5. Readout signals measured through an oscilloscope. In fig (a) the beginning
of a data acquisition run is shown. In fig (b) the timing of the main signals of the
photodiode array and the ADC have been measured. Finally in fig (c) a single ADC
conversion period is shown.
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(a)

(b)

Figure 5.6. Readout signals measured through an oscilloscope. A 3mm hole is used to
limit the light emitted by the led, reaching then the photodiode surface. About 4 pixels
are illuminated in accordance with a pitch size of 0.8mm. In fig (a) the output signal of
the photodiode array illuminated by a pulsed LED is shown. In fig (b) the serial data
output of the used ADC has been measured. 32 clock cycles are necessary to convert
and send the serialized digital data
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Chapter 6

Measurements

In this chapter the first results from the developed readout system, irradiated with
different light sources, will be shown. In particular, the geometry of the acquisition
process, the linearity tests made on the device and finally the result obtained will
be described in the following sections.

6.1 Geometry

As shown in section 5.1, the photodiode array has been placed in a PVC box in
order to irradiate its pixels with a pulsed LED. In particular, one side and the top
of such box have been pierced to form a circular hole of 3mm of diameter, where
different light generators have been mounted through dedicated adapters, as shown
in figure 6.1.

Figure 6.1. Picture of the hole made into the top side of the box and its dedicated adapters.
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The top hole has been created in order to directly irradiate the photodetector,
while the one on the side has been designed to directly illuminate the scintillating
channels described in section 2.4. Specifically, the distance between the top hole and
the photodetector plane is approximately 4 cm, while the distance between the side
hole and the scintillating channels plane is about 2.5 cm.

6.2 System Characterization

In order to further characterize the detector readout system, its linearity has been
tested by varying the integration time and the frequency of the photodetector; the
same pulsed LED, as described in section 5.1, has been used in order to make such
tests.

6.2.1 Data Errors

A typical photodiode array output can be seen in figure 6.2 where the photodetector
has a clock frequency of about 2MHz and an integration time of approximately
1ms. From such image a peak with a width of approximately 4 pixels, as calculated
in section 5.2, can be seen. In order to get such graph, multiple data operations
have been needed. As previously stated, the data have been measured varying the
integration time and the frequency of the photodetector; for each combination of
these two parameters, the measurements have been taken 2000 times.

During the first measurements taken a fluctuation of the channels values has
been noted. Due to the presence of this phenomenon, a high measuring error was
being introduced. Having therefore considerably high errors on the measurements
acquired, an error reducing algorithm has been studied.

A first step studied to obtain a statistical valid result is represented by the
operation of plotting a histogram of the values assumed by each channel during the
total number of acquisition runs (figure 6.3(a)). From such histogram a distribution
similar in each channel was found and the noise was noted to be correlated at
low frequencies. Because of that, a gaussian fit has been made on the histogram,
obtaining a mean value for each channel. Thanks to this operation, a graph of the
channel mean values versus the number of such channels could be derived as shown
in figure 6.3(c).

At this point, a pedestal value still needed to be subtracted from the obtained
values. In order to achieve such goal, for each trigger a histogram of the channels
values was analyzed. During such analysis the histogram has been fitted with a
gaussian curve centred in the mode point and the mean value found with such fit
has been subtracted to each channel mean value, as can be seen in figure 6.3(d).
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The result obtained from such operation is shown in figure 6.3(e).
Finally, in order to select the pixels illuminated by the LED light, the first and

last thirty channels of the array, that were noted to have the most amount of noise,
have been fitted with a constant (figure 6.3(f)): subtracting the calculated constant
and excluding the results that where less than three times the standard deviation
of such fit, the final graphs 6.2 has been produced for a photodiode array with 128
channels.

Figure 6.2. Final result of the studied error reducing algorithm for a set of measurements
acquired with a photodetector frequency of about 2MHz and an integration time of
approximately 1ms.

6.2.2 Linearity results

Having obtained the data with the process described in the previous part, a linearity
fit for each photodiode frequency has been made, varying the integration time and
excluding from the fitted points the ones that saturated the photodetector: such
exclusion has been made by setting a threshold, calculated through the saturated
channels. Graphs of such linearity curves are shown in figure 6.4.

From the fitted graphs, a value representing the output volt per photon of
approximately 50µV/photon can be derived. Moreover, from the same graphs, a
curve representing the difference between the values extrapolated from the fitted
points and the actual values measured can also be drawn. The result of such an
operation can be seen in figure 6.5.

As it can be seen from the shown graphs, the photodetector is linear exception
made for its saturation points. From this fact it can be stated that for integration
times between 1µs and 1ms a photodiode array frequency of about 2MHz can be
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(a) (b)

(c)

(d) (e)

Figure 6.3. Operation performed on the data measured with a photodetector frequency of
about 2MHz and an integration time of approximately 1ms. In fig (a) a histogram of
the values assumed by channel 61 during the 2000 acquisition runs is shown while in fig
(b) a graph of the channels mean value versus the number of such channels is pictured.
Moreover in fig (c) an histogram of the channels values fitted with a gaussian curve can
be seen. Finally in fig (d) the result of the subtraction of the fitted pedestal is drawn
and in fig (e) the constant fit of the first and last thirty channels values is shown.
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(a)

(b)

(c)

Figure 6.4. Linearity curves obtained by varying the photodetector frequency and the
integration time. The three curves pictured show a linear curve for a photodetector
frequency of approximately 2MHz (a), 0.5MHz (b) and 0.1MHz (c).
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(a)

(b)

(c)

Figure 6.5. Curves representing the difference between the values extrapolated from the
fitted points and the actual values measured excluding the saturated measurements
normalized with the value assumed by the maximum non saturated measurement.
The three curves pictured have been realized setting the photodetector frequency at
approximately 2MHz (a), 0.5MHz (b) and 0.1MHz (c).
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used, while for higher integration times a frequency of approximately 50 kHz should
be chosen.

6.3 Measurements

Having achieved this point, the first measurements with the microcapillary channels
have been taken. In order to do so, the light has been introduced in the box through
the side hole, irradiating the channels that have been directly laid on the photodiode
array; the setup used is shown in figure 6.6.

Figure 6.6. Image of the setup used to take the first measurements with the microcapillary
channels.

In this setup, multiple data measurements have been taken filling the microchan-
nels with a fluorescent liquid. The liquid was a saturated solution of Cargille, which
is a certified diiodomethane sulfur tin iodide refractive index liquid (n=1.80), and
Rhodamine 6G. A picture of the channels filled with such solution is shown in figure
6.7.

Figure 6.7. Picture of the channels filled with the Cargille and Rhodamine 6G solution.
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In such a setup different measurements have been taken by irradiating the
previously described michrochannel with a green light generated by different LED
and laser sources. In figure 6.8 a typical signal measured from a green light LED
source can be seen.

Figure 6.8. Typical signal measured from a green light LED source and its pedestal
measured with only the PVC block at a frequency of 250 kHz with an integration time
of 0.24s using a 256 channels photodiode array.
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Chapter 7

Conclusions

The presented thesis has shown the work undertaken in order to develop a readout
electronics for a new microcapillary scintillator detector studied for high energy
physics and hadrotherapy applications. In particular, different photodetectors and
analog to digital converters have been studied to collect the light generated form
the described microcapillary channels and to digitalize the measures acquired.

Having selected a Hamamatsu photodiode array and a Texas Instruments 14-bit
ADC, a dedicated device has been realized by programming a Xilinx FPGA and by
creating a communication protocol to interface a computer with it. Peculiarly, the
FPGA board has been programmed to monitor and synchronize the photodetector
and the ADC as well as to process the data acquired. Having developed a first
prototype of such a device, multiple tests have been performed in order to check
the correct functioning of the whole readout system. Finally the linearity of the
device has been tested, identifying the best working photodetector frequencies for
different integration times, and an initial measure has been taken by illuminating
with a green LED the microchannels filled with a fluorescent liquid.

The work undertaken produced a readout system capable of measuring a max-
imum input of 4.8V at a maximum frequency of 2MHz that keeps its linearity
features in an integration time range between 1µs and 10ms and that can be
controlled via a gigabit ethernet network.

On this specific detector readout system, further studies should be carried on.
In fact, the device needs to be further tested by filling the microchannels with a
scintillating material and by irradiating them with protons or other heavy particles;
moreover, the software coded to interface the readout with a computer should be
improved. Finally, the results obtained from such a developing process should be
installed on an accelerating apparatus and different measurements should be taken
in such setup.
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Appendix A

The VHDL Code

In this section the VHDL code written for the physical devices simulation, the FPGA
logic functioning and for their test bench is shown.

A.1 Photodiode Simulation

PhotodiodeArraySimulationTop.vhd

1 -- ---------------------------
2
3 -- PhotodiodeArraySimulationTop . vhd
4
5 -- ---------------------------
6
7 library IEEE;
8 use IEEE. STD_LOGIC_1164 .ALL;
9 use IEEE. STD_LOGIC_ARITH .ALL;

10
11 entity PhotodiodeArraySimulationTop is
12 generic ( width : integer := 14 );
13 Port ( clk : in STD_LOGIC ;
14 reset : in STD_LOGIC ;
15 video : out STD_LOGIC_VECTOR (width -1 downto 0);
16 trigger : out STD_LOGIC ;
17 eos : out STD_LOGIC );
18 end PhotodiodeArraySimulationTop ;
19
20 architecture Behavioral of PhotodiodeArraySimulationTop is
21
22 component PhotodiodeArraySimulation
23 generic ( width : integer := 14 );
24 Port ( Clk : in STD_LOGIC ;
25 Reset : in STD_LOGIC ;
26 random_video : in STD_LOGIC_VECTOR (width -1 downto 0);
27 Video : out STD_LOGIC_VECTOR (width -1 downto 0);
28 Trigger : out STD_LOGIC ;
29 EOS : out STD_LOGIC );
30 end component ;
31
32 component random
33 generic ( width : integer := 14 );
34 Port ( clk : in std_logic ;
35 random_num : out std_logic_vector (width -1 downto 0));
36 end component ;
37
38 signal randomInterno : std_logic_vector (width -1 downto 0);
39
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40 begin
41
42 PhotodiodeArraySimulationlogic : PhotodiodeArraySimulation port map(clk=>clk ,
43 reset =>reset ,
44 video =>video ,
45 trigger =>trigger ,
46 random_video => randomInterno ,
47 eos=>eos );
48
49 randomlogic : random port map( clk=>clk ,
50 random_num => randomInterno );
51
52 end Behavioral ;

PhotodiodeArraySimulation.vhd

1 -- ---------------------------
2
3 -- PhotodiodeArraySimulation .vhd
4
5 -- ---------------------------
6
7 library IEEE;
8 use IEEE. STD_LOGIC_1164 .ALL;
9 use IEEE. STD_LOGIC_ARITH .ALL;

10
11
12 entity PhotodiodeArraySimulation is
13 generic ( width : integer := 14);
14 Port ( Clk : in STD_LOGIC ;
15 Reset : in STD_LOGIC ;
16 random_video : in STD_LOGIC_VECTOR (width -1 downto 0);
17 Video : out STD_LOGIC_VECTOR (width -1 downto 0);
18 Trigger : out STD_LOGIC ;
19 EOS : out STD_LOGIC );
20 end PhotodiodeArraySimulation ;
21
22 architecture Behavioral of PhotodiodeArraySimulation is
23
24 constant maxChannelNumber : integer :=255;
25 signal count : integer range 0 to 6;
26 signal channelCounter : integer range 0 to maxChannelNumber :=0;
27 signal output : std_logic_vector (width -1 downto 0);
28 signal trig : std_logic ;
29 signal started : std_logic ;
30 signal eosint : std_logic ;
31 signal counterFromReset : integer range 0 to 19;
32 signal stopping : std_logic := ’0 ’;
33
34 begin
35
36 process (Reset , Clk)
37 begin
38 if (Reset ’ event and Reset =’0’) then
39 count <=0;
40 channelCounter <=0;
41 stopping <= ’0’;
42 output <=( others =>’0’);
43 counterFromReset <=1;
44 trig <= ’0 ’;
45 eosint <= ’1 ’;
46 counterFromReset <=0;
47 elsif ( Reset =’0’ and rising_edge (Clk) and counterFromReset <17) then
48 counterFromReset <= counterFromReset +1;
49 elsif ( channelCounter =( maxChannelNumber -1) and stopping =’0’) then
50 stopping <= ’1’;
51 elsif ( rising_edge (Clk) and counterFromReset = 17) then
52 if count =0 then
53 count <= count +1;
54 output <=( random_video );
55 elsif count =1 then
56 count <= count +1;
57 channelCounter <= channelCounter +1;
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58 trig <= ’1 ’;
59 elsif count =2 then
60 count <= count +1;
61 output <=( others =>’0’);
62 trig <= ’0 ’;
63 if ( stopping =’1’ and eosint =’1’) then
64 eosint <= ’0 ’;
65 count <=4;
66 end if;
67 elsif count =3 then
68 count <=0;
69 elsif count =7 then
70 eosint <= ’1 ’;
71 else
72 count <= count +1;
73 end if;
74 Video <= output ;
75 Trigger <= trig;
76 EOS <= eosint ;
77 end if;
78
79 end process ;
80
81
82 end Behavioral ;

Random.vhd

1 -- ---------------------------
2
3 -- Random . vhd
4
5 -- ---------------------------
6
7 library IEEE;
8 use IEEE. STD_LOGIC_1164 .ALL;
9

10 entity Random is
11 generic ( width : integer := 14 );
12 Port ( clk : in std_logic ;
13 random_num : out std_logic_vector (width -1 downto 0));
14 end Random ;
15
16 architecture Behavioral of Random is
17 begin
18 process (clk)
19
20 variable rand_temp : std_logic_vector (width -1 downto 0):=( width -1=>’1’, OTHERS =>’0’);
21 variable temp : std_logic := ’0’;
22
23 begin
24
25 if( rising_edge (clk )) then
26 temp := rand_temp (width -1) xor rand_temp (width -2);
27 rand_temp (width -1 downto 1) := rand_temp (width -2 downto 0);
28 rand_temp (0) := temp;
29 end if;
30 random_num <= rand_temp ;
31
32 end process ;
33
34 end Behavioral ;

A.2 ADC Simulation

1 -- ---------------------------
2
3 -- AdcSimulation .vhd
4
5 -- ---------------------------
6
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7 library IEEE;
8 use IEEE. STD_LOGIC_1164 .ALL;
9 use IEEE. NUMERIC_STD .ALL;

10
11 entity AdcSimulation is
12 generic ( width : integer := 14 );
13 Port ( input : in STD_LOGIC_VECTOR (width -1 downto 0);
14 clk : in STD_LOGIC ;
15 cs_n : in STD_LOGIC ;
16 sdo : out STD_LOGIC );
17 end AdcSimulation ;
18
19 architecture Behavioral of AdcSimulation is
20
21 signal n : integer range 0 to width +3 :=0;
22 signal internal_data : std_logic_vector (width -1 downto 0);
23 signal waiting : std_logic ;
24 signal start : std_logic ;
25
26 begin
27 process (clk , cs_n)
28 begin
29 if (cs_n ’ event and cs_n =’0’) then
30 sdo <=’Z ’;
31 start <= ’1 ’;
32 waiting <= ’0 ’;
33 internal_data <= input ;
34 n <=0;
35 elsif ( rising_edge (clk) and start =’1’) then
36 if( waiting =’0’) then
37 sdo <= internal_data (width -1-n);
38 end if;
39 if (n=width -1) then
40 waiting <= ’1 ’;
41 internal_data <=( others =>’0’);
42 elsif (n= width ) then
43 sdo <= ’0 ’;
44 elsif (n=( width +2)) then
45 n <=0;
46 start <= ’0 ’;
47 waiting <= ’0 ’;
48 end if;
49 n <=n+1;
50 end if;
51 end process ;
52
53 end Behavioral ;

A.3 FPGA Logic

userlogic.vhd

1 -- ----------------------------------------------------------------------------
2 -- user_logic .vhd - entity / architecture pair
3 -- ----------------------------------------------------------------------------
4 --
5 -- ***************************************************************************
6 -- ** Copyright (c) 1995 -2012 Xilinx , Inc . All rights reserved . **
7 -- ** **
8 -- ** Xilinx , Inc . **
9 -- ** XILINX IS PROVIDING THIS DESIGN , CODE , OR INFORMATION "AS IS" **

10 -- ** AS A COURTESY TO YOU , SOLELY FOR USE IN DEVELOPING PROGRAMS AND **
11 -- ** SOLUTIONS FOR XILINX DEVICES . BY PROVIDING THIS DESIGN , CODE , **
12 -- ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE , **
13 -- ** APPLICATION OR STANDARD , XILINX IS MAKING NO REPRESENTATION **
14 -- ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT , **
15 -- ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE **
16 -- ** FOR YOUR IMPLEMENTATION . XILINX EXPRESSLY DISCLAIMS ANY **
17 -- ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE **
18 -- ** IMPLEMENTATION , INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR **
19 -- ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF **
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20 -- ** INFRINGEMENT , IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS **
21 -- ** FOR A PARTICULAR PURPOSE . **
22 -- ** **
23 -- ***************************************************************************
24 --
25 -- ----------------------------------------------------------------------------
26 -- Filename : user_logic . vhd
27 -- Version : 2.00. a
28 -- Description : User logic .
29 -- Date : Fri Jun 22 16:08:56 2012 (by Create and Import Peripheral Wizard )
30 -- VHDL Standard : VHDL ’93
31 -- ----------------------------------------------------------------------------
32 -- Naming Conventions :
33 -- active low signals : "* _n"
34 -- clock signals : " clk", " clk_div #", " clk_ #x"
35 -- reset signals : " rst", " rst_n "
36 -- generics : "C_ *"
37 -- user defined types : "* _TYPE "
38 -- state machine next state : "* _ns "
39 -- state machine current state : "* _cs "
40 -- combinatorial signals : "* _com "
41 -- pipelined or register delay signals : "* _d #"
42 -- counter signals : "* cnt *"
43 -- clock enable signals : "* _ce "
44 -- internal version of output port : "* _i"
45 -- device pins : "* _pin "
46 -- ports : "- Names begin with Uppercase "
47 -- processes : "* _PROCESS "
48 -- component instantiations : "< ENTITY_ >I_ <#| FUNC >"
49 -- ----------------------------------------------------------------------------
50
51 -- DO NOT EDIT BELOW THIS LINE --------------------
52 library ieee;
53 use ieee. std_logic_1164 .all;
54 use ieee. std_logic_arith .all;
55 use ieee. std_logic_unsigned .all;
56
57 library proc_common_v3_00_a ;
58 use proc_common_v3_00_a . proc_common_pkg .all;
59
60 -- DO NOT EDIT ABOVE THIS LINE --------------------
61
62 --USER libraries added here
63
64 library unisim ;
65 use unisim . vcomponents .all;
66
67 -- ----------------------------------------------------------------------------
68 -- Entity section
69 -- ----------------------------------------------------------------------------
70 -- Definition of Generics :
71 -- C_SLV_DWIDTH -- Slave interface data bus width
72 -- C_NUM_REG -- Number of software accessible registers
73 -- C_RDFIFO_DEPTH -- Read FIFO depth
74 --
75 -- Definition of Ports :
76 -- Bus2IP_Clk -- Bus to IP clock
77 -- Bus2IP_Reset -- Bus to IP reset
78 -- Bus2IP_Data -- Bus to IP data bus
79 -- Bus2IP_BE -- Bus to IP byte enables
80 -- Bus2IP_RdCE -- Bus to IP read chip enable
81 -- Bus2IP_WrCE -- Bus to IP write chip enable
82 -- IP2Bus_Data -- IP to Bus data bus
83 -- IP2Bus_RdAck -- IP to Bus read transfer acknowledgement
84 -- IP2Bus_WrAck -- IP to Bus write transfer acknowledgement
85 -- IP2Bus_Error -- IP to Bus error response
86 -- IP2RFIFO_WrReq -- IP to RFIFO : IP write request
87 -- IP2RFIFO_Data -- IP to RFIFO : IP write data bus
88 -- RFIFO2IP_WrAck -- RFIFO to IP : RFIFO write acknowledge
89 -- RFIFO2IP_AlmostFull -- RFIFO to IP : RFIFO almost full
90 -- RFIFO2IP_Full -- RFIFO to IP : RFIFO full
91 -- RFIFO2IP_Vacancy -- RFIFO to IP : RFIFO vacancy
92 -- ----------------------------------------------------------------------------
93
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94 entity user_logic is
95 generic
96 (
97 -- ADD USER GENERICS BELOW THIS LINE ---------------
98 --USER generics added here
99 dataLength : integer := 16;

100 integrationTimeBitMax : integer :=8;
101 channelLength : integer := 8;
102 fifoDepth : integer := 2048;
103 hamDivisorLength : integer :=12;
104 adcDivisorLength : integer := 6;
105 -- ADD USER GENERICS ABOVE THIS LINE ---------------
106
107 -- DO NOT EDIT BELOW THIS LINE ---------------------
108 -- Bus protocol parameters , do not add to or delete
109 C_SLV_DWIDTH : integer := 32;
110 C_NUM_REG : integer := 8;
111 C_RDFIFO_DEPTH : integer := 16384
112 -- DO NOT EDIT ABOVE THIS LINE ---------------------
113 );
114 port
115 (
116 -- ADD USER PORTS BELOW THIS LINE ------------------
117 --USER ports added here
118
119 Ham_Eos : in std_logic ;
120 Ham_Trigger : in std_logic ;
121 Ham_ClkIn : in std_logic ;
122 Ham_ClkOut : out std_logic ;
123 Ham_Reset_n : out std_logic ;
124 Ham_Gain : out std_logic ;
125 Ham_InStart : out std_logic ;
126 Adc_SDO : in std_logic ;
127 Adc_ClkOut : out std_logic ;
128 Adc_CS_n : out std_logic ;
129 Adc_PDEn : out std_logic ;
130 Adc_ChSel : out std_logic ;
131 Gen_Clk : in std_logic ;
132 Gen_L0_p : in std_logic ;
133 Gen_L0_n : in std_logic ;
134 Gen_L1_p : in std_logic ;
135 Gen_L1_n : in std_logic ;
136 Gen_L2_p : out std_logic ;
137 Gen_L2_n : out std_logic ;
138 Gen_L3_p : out std_logic ;
139 Gen_L3_n : out std_logic ;
140 Gen_C0 : in std_logic ;
141 Gen_C1 : in std_logic ;
142 Gen_C2 : out std_logic ;
143 Gen_C3 : out std_logic ;
144 Gen_ClkOut_p : out std_logic ;
145 Gen_ClkOut_n : out std_logic ;
146 -- ADD USER PORTS ABOVE THIS LINE ------------------
147
148 -- DO NOT EDIT BELOW THIS LINE ---------------------
149 -- Bus protocol ports , do not add to or delete
150 Bus2IP_Clk : in std_logic ;
151 Bus2IP_Reset : in std_logic ;
152 Bus2IP_Data : in std_logic_vector (0 to C_SLV_DWIDTH -1);
153 Bus2IP_BE : in std_logic_vector (0 to C_SLV_DWIDTH /8 -1);
154 Bus2IP_RdCE : in std_logic_vector (0 to C_NUM_REG -1);
155 Bus2IP_WrCE : in std_logic_vector (0 to C_NUM_REG -1);
156 IP2Bus_Data : out std_logic_vector (0 to C_SLV_DWIDTH -1);
157 IP2Bus_RdAck : out std_logic ;
158 IP2Bus_WrAck : out std_logic ;
159 IP2Bus_Error : out std_logic ;
160 IP2RFIFO_WrReq : out std_logic ;
161 IP2RFIFO_Data : out std_logic_vector (0 to C_SLV_DWIDTH -1);
162 RFIFO2IP_WrAck : in std_logic ;
163 RFIFO2IP_AlmostFull : in std_logic ;
164 RFIFO2IP_Full : in std_logic ;
165 RFIFO2IP_Vacancy : in std_logic_vector (0 to log2( C_RDFIFO_DEPTH ))
166 -- DO NOT EDIT ABOVE THIS LINE ---------------------
167 );
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168
169 attribute MAX_FANOUT : string ;
170 attribute SIGIS : string ;
171
172 attribute SIGIS of Bus2IP_Clk : signal is "CLK";
173 attribute SIGIS of Bus2IP_Reset : signal is "RST";
174
175 end entity user_logic ;
176
177 -- ----------------------------------------------------------------------------
178 -- Architecture section
179 -- ----------------------------------------------------------------------------
180
181 architecture IMP of user_logic is
182
183 component FPGA
184 generic ( wordLength : integer :=32;
185 dataLength : integer :=16;
186 integrationTimeBitMax : integer :=8; --max integration time expressed in hamclk *2^( integrationTimeBitMax )
187 channelLength : integer :=8;
188 hamDivisorLength : integer :=12;
189 adcDivisorLength : integer := 6;
190 fifoDepth : integer :=2048);
191 Port ( rst_n : in std_logic ;
192 trigger : in std_logic ;
193 FPGA_Clk : in std_logic ;
194 integTime : in std_logic_vector ( integrationTimeBitMax -1 downto 0);
195 FSM_Clk : in std_logic ;
196 Ham_Eos : in std_logic ;
197 extTrigger : in std_logic ;
198 deseInput : in std_logic ;
199 Test : in std_logic ;
200 extFIFOFull : in std_logic ;
201 triggerDaInvRst_n : in std_logic ;
202 divisorHam : in std_logic_vector (0 to hamDivisorLength -1);
203 divisorAdc : in std_logic_vector (0 to adcDivisorLength -1);
204 triggerDaInv : out std_logic ;
205 extTrigOut : out std_logic_vector ( wordLength -2 downto 0);
206 wordOut : out std_logic_VECTOR ( wordLength -1 downto 0);
207 photodiodeClkOut : out std_logic ;
208 photodiodeStart : out std_logic ;
209 ADC_ClkOut : out std_logic ;
210 intFIFOFull : out std_logic ;
211 extFifoWrEn : out std_logic ;
212 intFIFOEmpty : out std_logic ;
213 busy : out std_logic ;
214 adcPDEN : out std_logic ;
215 ADCStart : out std_logic );
216 end component ;
217
218 signal L_int : std_logic_vector ( 3 downto 0);
219 signal L_int_n : std_logic_vector ( 3 downto 0);
220
221 signal sFIFOFull : std_logic ;
222 signal sFIFOEmpty : std_logic ;
223 signal sFIFOProgFull : std_logic ;
224 signal striggerDaInv : std_logic ;
225 signal rst_n : std_logic ;
226 signal triggerAnsw : std_logic ;
227 signal integTime : std_logic_vector (0 to integrationTimeBitMax -1);
228 signal sHamDivisor : std_logic_vector (0 to hamDivisorLength -1);
229 signal sAdcDivisor : std_logic_vector (0 to adcDivisorLength -1);
230 signal Gen_C0_enable : std_logic ;
231
232 --USER signal declarations added here , as needed for user logic
233
234 -- ----------------------------------------
235 -- Signals for user logic slave model s/w accessible register example
236 -- ----------------------------------------
237 signal slv_reg0 : std_logic_vector (0 to C_SLV_DWIDTH -1);
238 signal slv_reg1 : std_logic_vector (0 to C_SLV_DWIDTH -1);
239 signal slv_reg2 : std_logic_vector (0 to C_SLV_DWIDTH -1);
240 signal slv_reg3 : std_logic_vector (0 to C_SLV_DWIDTH -1);
241 signal slv_reg4 : std_logic_vector (0 to C_SLV_DWIDTH -1);
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242 signal slv_reg5 : std_logic_vector (0 to C_SLV_DWIDTH -1);
243 signal slv_reg6 : std_logic_vector (0 to C_SLV_DWIDTH -1);
244 signal slv_reg7 : std_logic_vector (0 to C_SLV_DWIDTH -1);
245 signal slv_reg_write_sel : std_logic_vector (0 to 7);
246 signal slv_reg_read_sel : std_logic_vector (0 to 7);
247 signal slv_ip2bus_data : std_logic_vector (0 to C_SLV_DWIDTH -1);
248 signal slv_read_ack : std_logic ;
249 signal slv_write_ack : std_logic ;
250 signal orTrigExt : std_logic ;
251 signal Test : std_logic ;
252 signal extTrigCount : std_logic_vector (0 to C_SLV_DWIDTH -2);
253 signal TrigExt : std_logic ;
254 signal sGen_C0 : std_logic ;
255 signal FIFOWrEn : std_logic ;
256
257 begin
258
259 --USER logic implementation added here
260
261 FPGAlogic : FPGA generic map ( wordLength => C_SLV_DWIDTH ,
262 dataLength => dataLength ,
263 integrationTimeBitMax => integrationTimeBitMax ,
264 channelLength => channelLength ,
265 hamDivisorLength => hamDivisorLength ,
266 adcDivisorLength => adcDivisorLength ,
267 fifoDepth => fifoDepth )
268 port map( rst_n => rst_n ,
269 trigger => Ham_Trigger ,
270 FPGA_Clk => Gen_Clk ,
271 integTime => integTime ,
272 Test => Test ,
273 Ham_Eos => Ham_Eos ,
274 FSM_Clk => Bus2IP_Clk ,
275 extTrigger => TrigExt ,
276 deseInput => Adc_SDO ,
277 extFIFOFull => RFIFO2IP_Full ,
278 triggerDaInvRst_n => triggerAnsw ,
279 triggerDaInv => striggerDaInv ,
280 extTrigOut => extTrigCount ,
281 divisorHam => sHamDivisor ,
282 divisorAdc => sAdcDivisor ,
283 wordOut => IP2RFIFO_Data ,
284 photodiodeClkOut => Ham_ClkOut ,
285 -- photodiodeStart => Ham_InStart ,
286 photodiodeStart => Ham_Reset_n ,
287 ADC_ClkOut => Adc_ClkOut ,
288 intFIFOFull => sFIFOFull ,
289 intFIFOEmpty => sFIFOEmpty ,
290 extFifoWrEn => FIFOWrEn ,
291 busy => sFIFOProgFull ,
292 adcPDEN => Adc_PDEn ,
293 ADCStart => Adc_CS_n );
294
295 -- ------------------------------------------------------
296 -- Example code to read / write user logic slave model s/w accessible registers
297 --
298 -- Note :
299 -- The example code presented here is to show you one way of reading / writing
300 -- software accessible registers implemented in the user logic slave model .
301 -- Each bit of the Bus2IP_WrCE / Bus2IP_RdCE signals is configured to correspond
302 -- to one software accessible register by the top level template . For example ,
303 -- if you have four 32 bit software accessible registers in the user logic ,
304 -- you are basically operating on the following memory mapped registers :
305 --
306 -- Bus2IP_WrCE / Bus2IP_RdCE Memory Mapped Register
307 -- "1000" C_BASEADDR + 0x0
308 -- "0100" C_BASEADDR + 0x4
309 -- "0010" C_BASEADDR + 0x8
310 -- "0001" C_BASEADDR + 0xC
311 --
312 -- ----------------------------------------
313 slv_reg_write_sel <= Bus2IP_WrCE (0 to 7);
314 slv_reg_read_sel <= Bus2IP_RdCE (0 to 7);
315 slv_write_ack <= Bus2IP_WrCE (0) or Bus2IP_WrCE (1) or Bus2IP_WrCE (2) or Bus2IP_WrCE (3)
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316 or Bus2IP_WrCE (4) or Bus2IP_WrCE (5) or Bus2IP_WrCE (6) or Bus2IP_WrCE (7);
317 slv_read_ack <= Bus2IP_RdCE (0) or Bus2IP_RdCE (1) or Bus2IP_RdCE (2) or Bus2IP_RdCE (3)
318 or Bus2IP_RdCE (4) or Bus2IP_RdCE (5) or Bus2IP_RdCE (6) or Bus2IP_RdCE (7);
319
320 -- implement slave model software accessible register (s)
321 SLAVE_REG_WRITE_PROC : process ( Bus2IP_Clk ) is
322 begin
323
324 if Bus2IP_Clk ’ event and Bus2IP_Clk = ’1’ then
325 if Bus2IP_Reset = ’1’ then
326 slv_reg0 <= ( others => ’0’);
327 slv_reg1 <= ( others => ’0’);
328 slv_reg2 <= ( others => ’0’);
329 slv_reg3 <= ( others => ’0’);
330 slv_reg4 <= ( others => ’0’);
331 slv_reg5 <= ( others => ’0’);
332 slv_reg6 <= ( others => ’0’);
333 slv_reg7 <= ( others => ’0’);
334 else
335 case slv_reg_write_sel is
336 when " 10000000 " =>
337 for byte_index in 0 to ( C_SLV_DWIDTH /8) -1 loop
338 if ( Bus2IP_BE ( byte_index ) = ’1’ ) then
339 slv_reg0 ( byte_index *8 to byte_index *8+7) <= Bus2IP_Data ( byte_index *8 to byte_index *8+7);
340 end if;
341 end loop ;
342 when " 01000000 " =>
343 for byte_index in 0 to ( C_SLV_DWIDTH /8) -1 loop
344 if ( Bus2IP_BE ( byte_index ) = ’1’ ) then
345 slv_reg1 ( byte_index *8 to byte_index *8+7) <= Bus2IP_Data ( byte_index *8 to byte_index *8+7);
346 end if;
347 end loop ;
348 when " 00100000 " =>
349 for byte_index in 0 to ( C_SLV_DWIDTH /8) -1 loop
350 if ( Bus2IP_BE ( byte_index ) = ’1’ ) then
351 slv_reg2 ( byte_index *8 to byte_index *8+7) <= Bus2IP_Data ( byte_index *8 to byte_index *8+7);
352 end if;
353 end loop ;
354 when " 00010000 " =>
355 for byte_index in 0 to ( C_SLV_DWIDTH /8) -1 loop
356 if ( Bus2IP_BE ( byte_index ) = ’1’ ) then
357 slv_reg3 ( byte_index *8 to byte_index *8+7) <= Bus2IP_Data ( byte_index *8 to byte_index *8+7);
358 end if;
359 end loop ;
360 when " 00001000 " =>
361 for byte_index in 0 to ( C_SLV_DWIDTH /8) -1 loop
362 if ( Bus2IP_BE ( byte_index ) = ’1’ ) then
363 slv_reg4 ( byte_index *8 to byte_index *8+7) <= Bus2IP_Data ( byte_index *8 to byte_index *8+7);
364 end if;
365 end loop ;
366 when " 00000100 " =>
367 for byte_index in 0 to ( C_SLV_DWIDTH /8) -1 loop
368 if ( Bus2IP_BE ( byte_index ) = ’1’ ) then
369 slv_reg5 ( byte_index *8 to byte_index *8+7) <= Bus2IP_Data ( byte_index *8 to byte_index *8+7);
370 end if;
371 end loop ;
372 when " 00000010 " =>
373 for byte_index in 0 to ( C_SLV_DWIDTH /8) -1 loop
374 if ( Bus2IP_BE ( byte_index ) = ’1’ ) then
375 slv_reg6 ( byte_index *8 to byte_index *8+7) <= Bus2IP_Data ( byte_index *8 to byte_index *8+7);
376 end if;
377 end loop ;
378 when " 00000001 " =>
379 for byte_index in 0 to ( C_SLV_DWIDTH /8) -1 loop
380 if ( Bus2IP_BE ( byte_index ) = ’1’ ) then
381 slv_reg7 ( byte_index *8 to byte_index *8+7) <= Bus2IP_Data ( byte_index *8 to byte_index *8+7);
382 end if;
383 end loop ;
384 when others => null ;
385 end case ;
386 end if;
387 end if;
388
389 end process SLAVE_REG_WRITE_PROC ;
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390
391 -- implement slave model software accessible register (s) read mux
392 SLAVE_REG_READ_PROC : process ( extTrigCount , RFIFO2IP_AlmostFull , RFIFO2IP_Full , sFIFOProgFull ,
393 sFIFOEmpty , sFIFOFull , striggerDaInv , slv_reg_read_sel , slv_reg0 , slv_reg1 ,
394 slv_reg2 , slv_reg3 , slv_reg4 , slv_reg5 , slv_reg6 , slv_reg7 , L_int ) is
395
396 begin
397
398 case slv_reg_read_sel is
399 when " 10000000 " => slv_ip2bus_data <= slv_reg0 ;
400 when " 01000000 " => slv_ip2bus_data <= slv_reg1 ;
401 when " 00100000 " => slv_ip2bus_data <= slv_reg2 ;
402 when " 00010000 " => slv_ip2bus_data <= slv_reg3 ;
403 when " 00001000 " => slv_ip2bus_data <= L_int (1) & L_int (0) & Gen_C1 & Gen_C0 &
404 "0000" &
405 "0000" &
406 "0000" &
407 striggerDaInv & "000" &
408 "0000" &
409 "0000" &
410 "0000";
411 when " 00000100 " => slv_ip2bus_data <= ’0’ & extTrigCount ;
412 when " 00000010 " => slv_ip2bus_data <= slv_reg6 ;
413 when " 00000001 " => slv_ip2bus_data <= sFIFOFull & sFIFOEmpty & sFIFOProgFull & RFIFO2IP_Full &
414 RFIFO2IP_AlmostFull & "000" &
415 "0000" &
416 "0000" &
417 "0000" &
418 "0000" &
419 "0000" &
420 "0000";
421
422 when others => slv_ip2bus_data <= ( others => ’0’);
423 end case ;
424
425 end process SLAVE_REG_READ_PROC ;
426
427 -- ----------------------------------------
428 -- Example code to drive IP to Bus signals
429 -- ----------------------------------------
430 IP2Bus_Data <= slv_ip2bus_data when slv_read_ack = ’1’ else
431 ( others => ’0’);
432
433 IP2Bus_WrAck <= slv_write_ack ;
434 IP2Bus_RdAck <= slv_read_ack ;
435 IP2Bus_Error <= ’0’;
436
437 --
438 -- all output configuration bits must be connecetd here to slv_regx
439 --
440 L_int (2) <= slv_reg0 (31); --bit 0 for readout
441 L_int (3) <= slv_reg0 (30);
442 rst_n <= slv_reg0 (29);
443 triggerAnsw <= slv_reg0 (28);
444 sHamDivisor (11) <= slv_reg0 (27);
445 sHamDivisor (10) <= slv_reg0 (26);
446 sHamDivisor (9) <= slv_reg0 (25);
447 sHamDivisor (8) <= slv_reg0 (24);
448 sHamDivisor (7) <= slv_reg0 (23);
449 sHamDivisor (6) <= slv_reg0 (22);
450 sHamDivisor (5) <= slv_reg0 (21);
451 sHamDivisor (4) <= slv_reg0 (20);
452 sHamDivisor (3) <= slv_reg0 (19);
453 sHamDivisor (2) <= slv_reg0 (18);
454 sHamDivisor (1) <= slv_reg0 (17);
455 sHamDivisor (0) <= slv_reg0 (16);
456 Gen_C2 <= slv_reg0 (15);
457 Gen_C3 <= slv_reg0 (14);
458 sAdcDivisor (5) <= slv_reg0 (13);
459 sAdcDivisor (4) <= slv_reg0 (12);
460 sAdcDivisor (3) <= slv_reg0 (11);
461 sAdcDivisor (2) <= slv_reg0 (10);
462 sAdcDivisor (1) <= slv_reg0 (9);
463 sAdcDivisor (0) <= slv_reg0 (8);
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464 Test <= slv_reg0 (0);
465
466 Ham_Gain <= slv_reg1 (31);
467 -- Ham_Reset_n <= slv_reg1 (30);
468 -- Ham_InStart not connected
469 integTime (7) <= slv_reg1 (29);
470 integTime (6) <= slv_reg1 (28);
471 integTime (5) <= slv_reg1 (27);
472 integTime (4) <= slv_reg1 (26);
473 integTime (3) <= slv_reg1 (25);
474 integTime (2) <= slv_reg1 (24);
475 integTime (1) <= slv_reg1 (23);
476 integTime (0) <= slv_reg1 (22);
477 Gen_C0_enable <= slv_reg1 (1);
478 orTrigExt <= slv_reg1 (0);
479
480 -- Adc_PDEn <= slv_reg2 (31);
481 Adc_ChSel <= slv_reg2 (30);
482
483 sGen_C0 <= Gen_C0 and Gen_C0_enable ;
484 TrigExt <= ( sGen_C0 or orTrigExt );
485 IP2RFIFO_WrReq <= FIFOWrEn ;
486
487 -- VHDL instantiation :
488
489 L0_l : IBUFDS port map (I=>Gen_L0_p , IB=> Gen_L0_n , O=> L_int (0));
490 L1_l : IBUFDS port map (I=>Gen_L1_p , IB => Gen_l1_n , O=> L_int (1));
491 L2_l : OBUFDS port map (I=> L_int (2) , O=>Gen_L2_p , OB=> Gen_L2_n );
492 L3_l : OBUFDS port map (I=> L_int (3) , O=>Gen_L3_p , OB=> Gen_L3_n );
493 CO_l : OBUFDS port map (I=>Gen_Clk , O=> Gen_ClkOut_p , OB=> Gen_ClkOut_n );
494
495 end IMP;

FPGA.vhd

1 -- --------------------------------------------------------------------------------
2
3 --FPGA . vhd
4
5 -- --------------------------------------------------------------------------------
6 library IEEE;
7 use IEEE. std_logic_1164 .ALL;
8 use IEEE. NUMERIC_STD .ALL;
9

10
11 entity FPGA is
12 generic ( wordLength : integer :=32;
13 dataLength : integer :=16;
14 integrationTimeBitMax : integer :=8;
15 channelLength : integer :=8;
16 hamDivisorLength : integer :=12;
17 adcDivisorLength : integer := 6;
18 fifoDepth : integer :=2048);
19 Port ( rst_n : in std_logic ;
20 trigger : in std_logic ;
21 FPGA_Clk : in std_logic ;
22 integTime : in std_logic_vector ( integrationTimeBitMax -1 downto 0);
23 FSM_Clk : in std_logic ;
24 Ham_Eos : in std_logic ;
25 Test : in std_logic ;
26 extTrigger : in std_logic ;
27 deseInput : in std_logic ;
28 divisorHam : in std_logic_vector (0 to hamDivisorLength -1);
29 divisorAdc : in std_logic_vector (0 to adcDivisorLength -1);
30 extFIFOFull : in std_logic ;
31 triggerDaInvRst_n : in std_logic ;
32 extTrigOut : out std_logic_vector ( wordLength -2 downto 0);
33 triggerDaInv : out std_logic ;
34 wordOut : out std_logic_VECTOR ( wordLength -1 downto 0);
35 photodiodeClkOut : out std_logic ;
36 photodiodeStart : out std_logic ;
37 ADC_ClkOut : out std_logic ;
38 intFIFOFull : out std_logic ;
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39 intFIFOEmpty : out std_logic ;
40 extFifoWrEn : out std_logic ;
41 busy : out std_logic ;
42 adcPDEN : out std_logic ;
43 ADCStart : out std_logic );
44 end FPGA;
45
46 architecture Behavioral of FPGA is
47
48
49 component LogicControlUnit
50 generic ( width : integer ;
51 dataLength : integer ;
52 integrationTimeBitMax : integer ;
53 channelLength : integer );
54 Port ( reset_n : in std_logic ;
55 extTrigger : in std_logic ;
56 clk : in std_logic ;
57 integTime : in std_logic_vector ( integrationTimeBitMax -1 downto 0);
58 Ham_Eos : in std_logic ;
59 clkAdc : in std_logic ;
60 clkHam : in std_logic ;
61 Test : in std_logic ;
62 trigger : in std_logic ;
63 dataIn : in std_logic_vector ( dataLength -1 downto 0);
64 dataReadyFromDeserializer : in std_logic ;
65 triggerDaInvRst_n : in std_logic ;
66 extTrigOut : out std_logic_vector (width -2 downto 0);
67 triggerDaInv : out std_logic ;
68 adcStart : out std_logic ;
69 photodiodeStart : out std_logic ;
70 deserializerStart : out std_logic ;
71 writeEnable : out std_logic ;
72 adcPDEN : out std_logic ;
73 wordOut : out std_logic_vector (width -1 downto 0));
74 end component ;
75
76 component Deserializzatore
77 generic ( width : integer );
78 Port ( reset_n : in STD_LOGIC ;
79 clk : in STD_LOGIC ;
80 cs_n : in STD_LOGIC ;
81 datain : in STD_LOGIC ;
82 ready : out STD_LOGIC ;
83 dataout : out STD_LOGIC_VECTOR (width -1 downto 0));
84 end component ;
85
86 component intFIFO
87 port ( rst : in std_logic ;
88 wr_clk : in std_logic ;
89 rd_clk : in std_logic ;
90 din : in std_logic_vector (31 downto 0);
91 wr_en : in std_logic ;
92 rd_en : in std_logic ;
93 dout : out std_logic_vector (31 downto 0);
94 full : out std_logic ;
95 empty : out std_logic ;
96 prog_full : OUT std_logic );
97 end component ;
98
99 component FSM

100 port ( intEmpty : in std_logic ;
101 extFull : in std_logic ;
102 clock : in std_logic ;
103 reset_n : in std_logic ;
104 wr_en : out std_logic ;
105 rd_en : out std_logic );
106 end component ;
107
108 component ClockDivider
109 generic ( lengthDivisor : integer :=12);
110 Port ( reset_n : in std_logic ;
111 clkIn : in std_logic ;
112 divisor : in std_logic_vector (0 to lengthDivisor -1);
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113 clkOut : out std_logic );
114 end component ;
115
116 signal deserStart : std_logic ;
117 signal deserReady : std_logic ;
118 signal deserOut : std_logic_vector (15 downto 0);
119 signal LogicWordOut : std_logic_vector (31 downto 0);
120 signal LogicWriteEn : std_logic ;
121 signal intFIFOEmp : std_logic ;
122 signal FIFORdEn : std_logic ;
123 signal zFifoFull : std_logic ;
124 signal adcIntClk : std_logic ;
125 signal hamIntClk : std_logic ;
126
127 begin
128
129 LogicControlUnitlogic : LogicControlUnit generic map ( width => wordLength ,
130 dataLength => dataLength ,
131 integrationTimeBitMax => integrationTimeBitMax ,
132 channelLength => channelLength )
133 port map( reset_n =>rst_n ,
134 clk=>FPGA_Clk ,
135 Ham_Eos =>Ham_Eos ,
136 clkAdc =>adcIntClk ,
137 clkHam =>hamIntClk ,
138 integTime => integTime ,
139 extTrigger => extTrigger ,
140 Test=>Test ,
141 trigger =>trigger ,
142 dataIn =>deserOut ,
143 dataReadyFromDeserializer => deserReady ,
144 triggerDaInvRst_n => triggerDaInvRst_n ,
145 triggerDaInv => triggerDaInv ,
146 extTrigOut => extTrigOut ,
147 adcStart =>ADCStart ,
148 photodiodeStart => photodiodeStart ,
149 deserializerStart => deserStart ,
150 writeEnable => LogicWriteEn ,
151 adcPDEN =>adcPDEN ,
152 wordOut => LogicWordOut );
153
154 Deserializzatorelogic : Deserializzatore generic map( width => dataLength )
155 port map( reset_n =>rst_n ,
156 clk=>adcIntClk ,
157 cs_n=> deserStart ,
158 datain =>deseInput ,
159 ready => deserReady ,
160 dataout => deserOut );
161
162 ClockHamDividerlogic : ClockDivider generic map( lengthDivisor => hamDivisorLength )
163 port map( reset_n =>rst_n ,
164 clkIn =>FPGA_Clk ,
165 divisor => divisorHam ,
166 clkOut => hamIntClk );
167
168 ClockADCDividerlogic : ClockDivider generic map( lengthDivisor => adcDivisorLength )
169 port map( reset_n =>rst_n ,
170 clkIn =>FPGA_Clk ,
171 divisor => divisorADC ,
172 clkOut => adcIntClk );
173
174 FIFOlogic : intFIFO
175 port map( rst=>not( rst_n ),
176 wr_clk =>FPGA_Clk ,
177 rd_clk =>FSM_Clk ,
178 din=> LogicWordOut ,
179 wr_en => LogicWriteEn ,
180 rd_en =>FIFORdEn ,
181 dout=>wordOut ,
182 full=> intFIFOFull ,
183 empty => intFIFOEmp ,
184 prog_full =>busy );
185
186 FSMlogic : FSM port map( intEmpty => intFIFOEmp ,
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187 extFull => extFIFOFull ,
188 clock =>FSM_Clk ,
189 reset_n =>rst_n ,
190 wr_en => extFifoWrEn ,
191 rd_en => FIFORdEn );
192
193
194 intFIFOEmpty <= intFIFOEmp ;
195 ADC_ClkOut <= adcIntClk ;
196 photodiodeClkOut <= hamIntClk ;
197
198 end Behavioral ;

intFIFO.vhd

1 -- ------------------------------------------------------------------------------
2 -- This file is owned and controlled by Xilinx and must be used solely --
3 -- for design , simulation , implementation and creation of design files --
4 -- limited to Xilinx devices or technologies . Use with non - Xilinx --
5 -- devices or technologies is expressly prohibited and immediately --
6 -- terminates your license . --
7 -- --
8 -- XILINX IS PROVIDING THIS DESIGN , CODE , OR INFORMATION "AS IS" SOLELY --
9 -- FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR XILINX DEVICES . BY --

10 -- PROVIDING THIS DESIGN , CODE , OR INFORMATION AS ONE POSSIBLE --
11 -- IMPLEMENTATION OF THIS FEATURE , APPLICATION OR STANDARD , XILINX IS --
12 -- MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE FROM ANY --
13 -- CLAIMS OF INFRINGEMENT , AND YOU ARE RESPONSIBLE FOR OBTAINING ANY --
14 -- RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION . XILINX EXPRESSLY --
15 -- DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
16 -- IMPLEMENTATION , INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
17 -- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
18 -- INFRINGEMENT , IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --
19 -- PARTICULAR PURPOSE . --
20 -- --
21 -- Xilinx products are not intended for use in life support appliances , --
22 -- devices , or systems . Use in such applications are expressly --
23 -- prohibited . --
24 -- --
25 -- (c) Copyright 1995 -2012 Xilinx , Inc . --
26 -- All rights reserved . --
27 -- ------------------------------------------------------------------------------
28 -- ------------------------------------------------------------------------------
29 -- You must compile the wrapper file FIFO . vhd when simulating
30 -- the core , FIFO . When compiling the wrapper file , be sure to
31 -- reference the XilinxCoreLib VHDL simulation library . For detailed
32 -- instructions , please refer to the " CORE Generator Help ".
33
34 -- The synthesis directives " translate_off / translate_on " specified
35 -- below are supported by Xilinx , Mentor Graphics and Synplicity
36 -- synthesis tools . Ensure they are correct for your synthesis tool (s).
37
38 LIBRARY ieee;
39 USE ieee. std_logic_1164 .ALL;
40 -- synthesis translate_off
41 LIBRARY XilinxCoreLib ;
42 -- synthesis translate_on
43 ENTITY intFIFO IS
44 PORT ( rst : IN STD_LOGIC ;
45 wr_clk : IN STD_LOGIC ;
46 rd_clk : IN STD_LOGIC ;
47 din : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
48 wr_en : IN STD_LOGIC ;
49 rd_en : IN STD_LOGIC ;
50 dout : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
51 full : OUT STD_LOGIC ;
52 empty : OUT STD_LOGIC ;
53 prog_full : OUT STD_LOGIC );
54 END intFIFO ;
55 ARCHITECTURE FIFO_a OF intFIFO IS
56 -- synthesis translate_off
57 COMPONENT wrapped_FIFO
58 PORT (
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59 rst : IN STD_LOGIC ;
60 wr_clk : IN STD_LOGIC ;
61 rd_clk : IN STD_LOGIC ;
62 din : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
63 wr_en : IN STD_LOGIC ;
64 rd_en : IN STD_LOGIC ;
65 dout : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
66 full : OUT STD_LOGIC ;
67 empty : OUT STD_LOGIC ;
68 prog_full : OUT STD_LOGIC
69 );
70 END COMPONENT ;
71
72 -- Configuration specification
73 FOR ALL : wrapped_FIFO USE ENTITY XilinxCoreLib . fifo_generator_v8_4 ( behavioral )
74 GENERIC MAP (
75 c_add_ngc_constraint => 0,
76 c_application_type_axis => 0,
77 c_application_type_rach => 0,
78 c_application_type_rdch => 0,
79 c_application_type_wach => 0,
80 c_application_type_wdch => 0,
81 c_application_type_wrch => 0,
82 c_axi_addr_width => 32,
83 c_axi_aruser_width => 1,
84 c_axi_awuser_width => 1,
85 c_axi_buser_width => 1,
86 c_axi_data_width => 64,
87 c_axi_id_width => 4,
88 c_axi_ruser_width => 1,
89 c_axi_type => 0,
90 c_axi_wuser_width => 1,
91 c_axis_tdata_width => 64,
92 c_axis_tdest_width => 4,
93 c_axis_tid_width => 8,
94 c_axis_tkeep_width => 4,
95 c_axis_tstrb_width => 4,
96 c_axis_tuser_width => 4,
97 c_axis_type => 0,
98 c_common_clock => 0,
99 c_count_type => 0,

100 c_data_count_width => 11,
101 c_default_value => " BlankString ",
102 c_din_width => 32,
103 c_din_width_axis => 1,
104 c_din_width_rach => 32,
105 c_din_width_rdch => 64,
106 c_din_width_wach => 32,
107 c_din_width_wdch => 64,
108 c_din_width_wrch => 2,
109 c_dout_rst_val => "0",
110 c_dout_width => 32,
111 c_enable_rlocs => 0,
112 c_enable_rst_sync => 1,
113 c_error_injection_type => 0,
114 c_error_injection_type_axis => 0,
115 c_error_injection_type_rach => 0,
116 c_error_injection_type_rdch => 0,
117 c_error_injection_type_wach => 0,
118 c_error_injection_type_wdch => 0,
119 c_error_injection_type_wrch => 0,
120 c_family => " virtex5 ",
121 c_full_flags_rst_val => 1,
122 c_has_almost_empty => 0,
123 c_has_almost_full => 0,
124 c_has_axi_aruser => 0,
125 c_has_axi_awuser => 0,
126 c_has_axi_buser => 0,
127 c_has_axi_rd_channel => 0,
128 c_has_axi_ruser => 0,
129 c_has_axi_wr_channel => 0,
130 c_has_axi_wuser => 0,
131 c_has_axis_tdata => 0,
132 c_has_axis_tdest => 0,
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133 c_has_axis_tid => 0,
134 c_has_axis_tkeep => 0,
135 c_has_axis_tlast => 0,
136 c_has_axis_tready => 1,
137 c_has_axis_tstrb => 0,
138 c_has_axis_tuser => 0,
139 c_has_backup => 0,
140 c_has_data_count => 0,
141 c_has_data_counts_axis => 0,
142 c_has_data_counts_rach => 0,
143 c_has_data_counts_rdch => 0,
144 c_has_data_counts_wach => 0,
145 c_has_data_counts_wdch => 0,
146 c_has_data_counts_wrch => 0,
147 c_has_int_clk => 0,
148 c_has_master_ce => 0,
149 c_has_meminit_file => 0,
150 c_has_overflow => 0,
151 c_has_prog_flags_axis => 0,
152 c_has_prog_flags_rach => 0,
153 c_has_prog_flags_rdch => 0,
154 c_has_prog_flags_wach => 0,
155 c_has_prog_flags_wdch => 0,
156 c_has_prog_flags_wrch => 0,
157 c_has_rd_data_count => 0,
158 c_has_rd_rst => 0,
159 c_has_rst => 1,
160 c_has_slave_ce => 0,
161 c_has_srst => 0,
162 c_has_underflow => 0,
163 c_has_valid => 0,
164 c_has_wr_ack => 0,
165 c_has_wr_data_count => 0,
166 c_has_wr_rst => 0,
167 c_implementation_type => 2,
168 c_implementation_type_axis => 1,
169 c_implementation_type_rach => 1,
170 c_implementation_type_rdch => 1,
171 c_implementation_type_wach => 1,
172 c_implementation_type_wdch => 1,
173 c_implementation_type_wrch => 1,
174 c_init_wr_pntr_val => 0,
175 c_interface_type => 0,
176 c_memory_type => 1,
177 c_mif_file_name => " BlankString ",
178 c_msgon_val => 1,
179 c_optimization_mode => 0,
180 c_overflow_low => 0,
181 c_preload_latency => 1,
182 c_preload_regs => 0,
183 c_prim_fifo_type => "2kx18",
184 c_prog_empty_thresh_assert_val => 2,
185 c_prog_empty_thresh_assert_val_axis => 1022 ,
186 c_prog_empty_thresh_assert_val_rach => 1022 ,
187 c_prog_empty_thresh_assert_val_rdch => 1022 ,
188 c_prog_empty_thresh_assert_val_wach => 1022 ,
189 c_prog_empty_thresh_assert_val_wdch => 1022 ,
190 c_prog_empty_thresh_assert_val_wrch => 1022 ,
191 c_prog_empty_thresh_negate_val => 3,
192 c_prog_empty_type => 0,
193 c_prog_empty_type_axis => 5,
194 c_prog_empty_type_rach => 5,
195 c_prog_empty_type_rdch => 5,
196 c_prog_empty_type_wach => 5,
197 c_prog_empty_type_wdch => 5,
198 c_prog_empty_type_wrch => 5,
199 c_prog_full_thresh_assert_val => 1534 ,
200 c_prog_full_thresh_assert_val_axis => 1023 ,
201 c_prog_full_thresh_assert_val_rach => 1023 ,
202 c_prog_full_thresh_assert_val_rdch => 1023 ,
203 c_prog_full_thresh_assert_val_wach => 1023 ,
204 c_prog_full_thresh_assert_val_wdch => 1023 ,
205 c_prog_full_thresh_assert_val_wrch => 1023 ,
206 c_prog_full_thresh_negate_val => 1533 ,
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207 c_prog_full_type => 1,
208 c_prog_full_type_axis => 5,
209 c_prog_full_type_rach => 5,
210 c_prog_full_type_rdch => 5,
211 c_prog_full_type_wach => 5,
212 c_prog_full_type_wdch => 5,
213 c_prog_full_type_wrch => 5,
214 c_rach_type => 0,
215 c_rd_data_count_width => 11,
216 c_rd_depth => 2048 ,
217 c_rd_freq => 1,
218 c_rd_pntr_width => 11,
219 c_rdch_type => 0,
220 c_reg_slice_mode_axis => 0,
221 c_reg_slice_mode_rach => 0,
222 c_reg_slice_mode_rdch => 0,
223 c_reg_slice_mode_wach => 0,
224 c_reg_slice_mode_wdch => 0,
225 c_reg_slice_mode_wrch => 0,
226 c_synchronizer_stage => 2,
227 c_underflow_low => 0,
228 c_use_common_overflow => 0,
229 c_use_common_underflow => 0,
230 c_use_default_settings => 0,
231 c_use_dout_rst => 1,
232 c_use_ecc => 0,
233 c_use_ecc_axis => 0,
234 c_use_ecc_rach => 0,
235 c_use_ecc_rdch => 0,
236 c_use_ecc_wach => 0,
237 c_use_ecc_wdch => 0,
238 c_use_ecc_wrch => 0,
239 c_use_embedded_reg => 0,
240 c_use_fifo16_flags => 0,
241 c_use_fwft_data_count => 0,
242 c_valid_low => 0,
243 c_wach_type => 0,
244 c_wdch_type => 0,
245 c_wr_ack_low => 0,
246 c_wr_data_count_width => 11,
247 c_wr_depth => 2048 ,
248 c_wr_depth_axis => 1024 ,
249 c_wr_depth_rach => 16,
250 c_wr_depth_rdch => 1024 ,
251 c_wr_depth_wach => 16,
252 c_wr_depth_wdch => 1024 ,
253 c_wr_depth_wrch => 16,
254 c_wr_freq => 1,
255 c_wr_pntr_width => 11,
256 c_wr_pntr_width_axis => 10,
257 c_wr_pntr_width_rach => 4,
258 c_wr_pntr_width_rdch => 10,
259 c_wr_pntr_width_wach => 4,
260 c_wr_pntr_width_wdch => 10,
261 c_wr_pntr_width_wrch => 4,
262 c_wr_response_latency => 1,
263 c_wrch_type => 0
264 );
265 -- synthesis translate_on
266 BEGIN
267 -- synthesis translate_off
268 U0 : wrapped_FIFO
269 PORT MAP (
270 rst => rst ,
271 wr_clk => wr_clk ,
272 rd_clk => rd_clk ,
273 din => din ,
274 wr_en => wr_en ,
275 rd_en => rd_en ,
276 dout => dout ,
277 full => full ,
278 empty => empty ,
279 prog_full => prog_full
280 );
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281 -- synthesis translate_on
282
283 END FIFO_a ;

FSM.vhd

1 -- -----------------------------------------------------------------------------------------
2
3 --FSM .vhd
4
5 -- -----------------------------------------------------------------------------------------
6
7
8 library ieee ;
9 use ieee. std_logic_1164 .all;

10
11 entity FSM is
12 port ( intEmpty : in std_logic ;
13 extFull : in std_logic ;
14 clock : in std_logic ;
15 reset_n : in std_logic ;
16 wr_en : out std_logic ;
17 rd_en : out std_logic );
18 end FSM;
19
20 architecture Behavioral of FSM is
21
22 type state_type is (S0 , S1 , S2 , S3 );
23 signal next_state , current_state : state_type ;
24
25 begin
26
27 state_reg : process (clock , reset_n )
28 begin
29 if ( reset_n =’0’) then
30 current_state <= S0;
31 elsif (clock ’ event and clock =’1’) then
32 current_state <= next_state ;
33 end if;
34 end process ;
35
36 comb_logic : process ( current_state , intEmpty , extFull )
37 begin
38 case current_state is
39 when S0 => rd_en <= ’0’;
40 wr_en <=’0’;
41 if ( intEmpty =’0’) then
42 next_state <= S1;
43 else
44 next_state <= S0;
45 end if;
46
47 when S1 => rd_en <= ’1’;
48 wr_en <=’0’;
49 next_state <= S2;
50
51 when S2 => rd_en <= ’0’;
52 wr_en <=’0’;
53 if ( extFull =’0’) then
54 next_state <= S3;
55 else
56 next_state <= S2;
57 end if;
58
59 when S3 => rd_en <= ’0’;
60 wr_en <= ’1’;
61 if ( intEmpty =’0’) then
62 next_state <= S1;
63 else
64 next_state <= S0;
65 end if;
66
67 when others =>
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68 rd_en <= ’0’;
69 wr_en <=’0’;
70 next_state <= S0;
71 end case ;
72 end process ;
73 end Behavioral ;

Deserializzatore.vhd

1 -- -----------------------------------------------------------------------------------------
2
3 -- Deserializzatore . vhd
4
5 -- -----------------------------------------------------------------------------------------
6
7 library IEEE;
8 use IEEE. STD_LOGIC_1164 .ALL;
9 use IEEE. NUMERIC_STD .ALL;

10
11
12 entity Deserializzatore is
13 generic ( width : integer :=16);
14 Port ( reset_n : in STD_LOGIC ;
15 clk : in STD_LOGIC ;
16 cs_n : in STD_LOGIC ;
17 datain : in STD_LOGIC ;
18 ready : out STD_LOGIC ;
19 dataout : out STD_LOGIC_VECTOR (width -1 downto 0));
20 end Deserializzatore ;
21
22 architecture Behavioral of Deserializzatore is
23
24 type state_type is (S0 , S1 , S2 , S3 );
25 signal current_state : state_type ;
26
27 signal clkCounterInternal : unsigned (4 downto 0);
28 constant maxClkCounterInternal : unsigned (4 downto 0):= (4=>’0’, others =>’1’);
29 signal outputInternal : unsigned (width -1 downto 0);
30
31 begin
32
33 comb_log : process (clk , reset_n )
34 begin
35 if ( reset_n =’0’) then
36 current_state <= S0;
37 clkCounterInternal <= ( others =>’0’);
38 outputInternal <= ( others =>’0’);
39
40 elsif (clk ’ event and clk =’1’) then
41
42 if ( current_state = S0) then
43 clkCounterInternal <= ( others =>’0’);
44 outputInternal <= ( others =>’0’);
45 current_state <= S1;
46 elsif ( current_state = S1 and cs_n =’0’) then
47 if ( clkCounterInternal + 1 = maxClkCounterInternal ) then
48 current_state <= S2;
49 elsif ( datain = ’1’) then
50 outputInternal <= outputInternal + (2**( width -3- TO_INTEGER ( clkCounterInternal )));
51 clkCounterInternal <= clkCounterInternal + 1;
52 else
53 clkCounterInternal <= clkCounterInternal + 1;
54 end if;
55 elsif ( current_state = S2) then
56 current_state <= S3;
57 elsif ( current_state = S3) then
58 if (cs_n =’1’) then
59 clkCounterInternal <= ( others =>’0’);
60 outputInternal <= ( others =>’0’);
61 current_state <= S1;
62 end if;
63 end if;
64 end if;
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65 end process ;
66
67
68 output : process ( current_state )
69 begin
70 case current_state is
71 when S0 => ready <= ’0’;
72 dataout <= ( others =>’0’);
73
74 when S2 => ready <= ’1’;
75 dataout <= std_logic_vector ( outputInternal );
76
77 when others => ready <= ’0’;
78 dataout <= std_logic_vector ( outputInternal );
79
80 end case ;
81 end process ;
82
83 end Behavioral ;

ClockDivider.vhd

1 -- -----------------------------------------------------------------------------------------
2
3 -- ClockDivider . vhd
4
5 -- -----------------------------------------------------------------------------------------
6
7 library IEEE;
8 use IEEE. STD_LOGIC_1164 .ALL;
9 use IEEE. NUMERIC_STD .ALL;

10
11
12 entity ClockDivider is
13 generic ( lengthDivisor : integer :=12);
14 Port ( reset_n : in std_logic ;
15 clkIn : in std_logic ;
16 divisor : in std_logic_vector ( lengthDivisor -1 downto 0);
17 clkOut : out std_logic );
18 end ClockDivider ;
19
20 architecture Behavioral of ClockDivider is
21
22 signal clockState : std_logic := ’0 ’;
23 signal n : unsigned ( lengthDivisor -1 downto 0);
24
25
26 begin
27 process (clkIn , reset_n )
28
29 begin
30 if( reset_n =’0’) then
31 n(0) <= ’1 ’;
32 n( lengthDivisor -1 downto 1) <=( others =>’0’);
33 clockState <= ’1 ’;
34
35 elsif ( rising_edge ( clkIn )) then
36
37 if(n=(’0’ & unsigned ( divisor ( lengthDivisor -1 downto 1)))) then
38 clockState <= ’0 ’;
39 elsif (n= unsigned ( divisor )) then
40 clockState <= ’1 ’;
41 end if;
42
43 if (n= unsigned ( divisor )) then
44 n(0) <= ’1 ’;
45 n( lengthDivisor -1 downto 1) <=( others =>’0’);
46 else
47 n <= unsigned (n)+1;
48 end if;
49
50 end if;
51 end process ;
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52
53 clkOut <= clockState ;
54
55 end Behavioral ;

LogicControlUnit.vhd

1 -- ------------------------------------------------------------------------------
2
3 -- LogicControlUnit . vhd
4
5 -- ------------------------------------------------------------------------------
6
7 library IEEE;
8 use IEEE. STD_LOGIC_1164 .ALL;
9 use IEEE. NUMERIC_STD .ALL;

10
11 entity LogicControlUnit is
12 generic ( width : integer ;
13 dataLength : integer ;
14 channelLength : integer ;
15 integrationTimeBitMax : integer );
16 Port ( reset_n : in std_logic ;
17 extTrigger : in std_logic ;
18 clk : in std_logic ;
19 clkAdc : in std_logic ;
20 clkHam : in std_logic ;
21 Test : in std_logic ;
22 Ham_Eos : in std_logic ;
23 trigger : in std_logic ;
24 dataIn : in std_logic_vector ( dataLength -1 downto 0);
25 dataReadyFromDeserializer : in std_logic ;
26 integTime : in std_logic_vector ( integrationTimeBitMax -1 downto 0);
27 triggerDaInvRst_n : in std_logic ;
28 extTrigOut : out std_logic_vector (width -2 downto 0);
29 triggerDaInv : out std_logic ;
30 adcStart : out std_logic ;
31 photodiodeStart : out std_logic ;
32 deserializerStart : out std_logic ;
33 writeEnable : out std_logic ;
34 adcPDEN : out std_logic ;
35 wordOut : out std_logic_vector (width -1 downto 0));
36 end LogicControlUnit ;
37
38 architecture Behavioral of LogicControlUnit is
39
40 -- ------------------------------------ Component Declaration -------------------------
41
42 component TriggerAnalyzer
43 Port ( clk : in std_logic ;
44 reset_n : in std_logic ;
45 trigger : in std_logic ;
46 rising : out std_logic ;
47 falling : out std_logic );
48 end component ;
49
50 component ClkAnalyzer
51 Port ( clk : in std_logic ;
52 reset_n : in std_logic ;
53 clkAdc : in std_logic ;
54 rising : out std_logic );
55 end component ;
56
57 -- -----------------------------------------------------------------------------------
58
59 type state_type is (S0 , S1 , S2 , S3 , S4 , S5 , S6 , S7 , S8 , S9 , S10 , S11 , S12 );
60 signal current_state : state_type ;
61
62 signal extTrigOutInternal : unsigned (width -2 downto 0);
63 signal photodiodeStartCounterInternal : unsigned ( integrationTimeBitMax -1 downto 0);
64 signal adcStartCounterInternal : unsigned (5 downto 0);
65 signal channelCounter : unsigned ( channelLength -1 downto 0);
66
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67 constant maxExtTrigOutInternal : unsigned (width -2 downto 0) := ( others =>’1’);
68 constant intermediateAdcStartCounterInternal : unsigned (5 downto 0) := (4=>’1’, others =>’0’);
69 constant maxAdcStartCounterInternal : unsigned (5 downto 0) := (5=>’1’, others =>’0’);
70 constant maxChannelCounterInternal : unsigned ( channelLength -1 downto 0) := ( others =>’1’);
71
72 -- signal adcPDENInternal : std_logic ;
73
74 signal triggerDaInvInternal : std_logic ;
75 signal trigRising : std_logic ;
76 signal trigFalling : std_logic ;
77 signal extTrigRising : std_logic ;
78 signal adcRising : std_logic ;
79 signal hamRising : std_logic ;
80 signal integTimeReached : std_logic ;
81 signal intermediateAdcStartCounterReached : std_logic ;
82 signal maxAdcStartCounterReached : std_logic ;
83 signal maxChannelCounterReached : std_logic ;
84 signal maxExtTrigOutReached : std_logic ;
85
86
87 begin
88
89 TriggerAnalyzerlogic : TriggerAnalyzer port map( clk=>clk ,
90 reset_n =>reset_n ,
91 trigger =>trigger ,
92 rising => trigRising ,
93 falling => trigFalling );
94
95 ExtTriggerAnalyzerlogic : ClkAnalyzer port map( clk=>clk ,
96 reset_n =>reset_n ,
97 clkAdc => extTrigger ,
98 rising => extTrigRising );
99

100 AdcClkAnalyzerlogic : ClkAnalyzer port map( clk=>clk ,
101 reset_n =>reset_n ,
102 clkAdc =>clkAdc ,
103 rising => adcRising );
104
105 HamClkAnalyzerlogic : ClkAnalyzer port map( clk=>clk ,
106 reset_n =>reset_n ,
107 clkAdc =>clkHam ,
108 rising => hamRising );
109
110 integTimeReached_setting : process (clk)
111 begin
112 if (clk ’ event and clk =’1’) then
113 if( std_logic_vector ( photodiodeStartCounterInternal - 1) = integTime ) then
114 integTimeReached <= ’1 ’;
115 else
116 integTimeReached <= ’0 ’;
117 end if;
118 end if;
119 end process ;
120
121 intermediateAdcStartCounterReached_setting : process (clk)
122 begin
123 if (clk ’ event and clk =’1’) then
124 if( adcStartCounterInternal = intermediateAdcStartCounterInternal ) then
125 intermediateAdcStartCounterReached <= ’1 ’;
126 else
127 intermediateAdcStartCounterReached <= ’0 ’;
128 end if;
129 end if;
130 end process ;
131
132 maxAdcStartCounterReached_setting : process (clk)
133 begin
134 if (clk ’ event and clk =’1’) then
135 if( adcStartCounterInternal = maxAdcStartCounterInternal ) then
136 maxAdcStartCounterReached <= ’1 ’;
137 else
138 maxAdcStartCounterReached <= ’0 ’;
139 end if;
140 end if;
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141 end process ;
142
143 maxChannelCounterReached_setting : process (clk)
144 begin
145 if (clk ’ event and clk =’1’) then
146 if( channelCounter = maxChannelCounterInternal ) then
147 maxChannelCounterReached <= ’1 ’;
148 else
149 maxChannelCounterReached <= ’0 ’;
150 end if;
151 end if;
152 end process ;
153
154 maxExtTrigOutReached_setting : process (clk)
155 begin
156 if (clk ’ event and clk =’1’) then
157 if( extTrigOutInternal = maxExtTrigOutInternal ) then
158 maxExtTrigOutReached <= ’1 ’;
159 else
160 maxExtTrigOutReached <= ’0 ’;
161 end if;
162 end if;
163 end process ;
164
165
166 comb_log : process (clk , reset_n )
167 begin
168 if ( reset_n =’0’) then
169 current_state <= S0;
170 extTrigOutInternal <= ( others =>’0’);
171 photodiodeStartCounterInternal <= ( others =>’0’);
172 adcStartCounterInternal <= ( others =>’0’);
173 channelCounter <= ( others =>’1’);
174 -- adcPDENInternal <= ’0’;
175 triggerDaInvInternal <=’0’;
176
177 elsif (clk ’ event and clk =’1’) then
178
179 case current_state is
180 when S0 =>
181 if( triggerDaInvRst_n =’0’) then
182 triggerDaInvInternal <= ’0’;
183 else
184 triggerDaInvInternal <= ’1’;
185 end if;
186 current_state <= S1;
187
188 when S1 =>
189 if( extTrigRising =’1’) then
190 channelCounter <= ( others =>’1’);
191 -- adcPDENInternal <= ’0’;
192 current_state <= S2;
193 end if;
194
195 when S2 =>
196 if (Test =’1’) then
197 current_state <= S10;
198 else
199 current_state <= S3;
200 end if;
201
202 when S3 =>
203 if ( integTimeReached = ’1’) then
204 photodiodeStartCounterInternal <= ( others =>’0’);
205 current_state <= S4;
206 elsif ( hamRising = ’1’) then
207 photodiodeStartCounterInternal <= photodiodeStartCounterInternal +1;
208 end if;
209
210 when S4 =>
211 if ( trigRising =’1’) then
212 current_state <= S5;
213 end if;
214
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215 when S5 =>
216 if ( intermediateAdcStartCounterReached = ’1’) then
217 if( maxChannelCounterReached = ’1’) then
218 channelCounter <= ( others =>’0’);
219 else
220 channelCounter <= channelCounter + 1;
221 end if;
222 current_state <= S6;
223 elsif ( adcRising = ’1’) then
224 adcStartCounterInternal <= adcStartCounterInternal +1;
225 end if;
226
227 when S6 =>
228 if ( maxAdcStartCounterReached = ’1’) then
229 adcStartCounterInternal <= ( others =>’0’);
230 current_state <= S7;
231 elsif ( adcRising = ’1’) then
232 adcStartCounterInternal <= adcStartCounterInternal +1;
233 end if;
234
235 when S7 => current_state <= S8;
236
237 when S8 =>
238 if ( trigFalling =’1’) then
239 --if ( Ham_Eos = ’0’) then
240 -- adcPDENInternal <= ’0’;
241 --else
242 -- adcPDENInternal <= ’0’;
243 --end if;
244 current_state <= S9;
245 end if;
246
247 when S9 =>
248 if ( intermediateAdcStartCounterReached = ’1’) then
249 current_state <= S10;
250 elsif ( adcRising = ’1’) then
251 adcStartCounterInternal <= adcStartCounterInternal +1;
252 end if;
253
254 when S10 =>
255 if ( maxAdcStartCounterReached = ’1’) then
256 adcStartCounterInternal <= ( others =>’0’);
257 current_state <= S11;
258 elsif ( adcRising = ’1’) then
259 adcStartCounterInternal <= adcStartCounterInternal +1;
260 end if;
261
262 when S11 =>
263 if ( Ham_Eos = ’0’) then
264 current_state <= S12;
265 else
266 current_state <= S4;
267 end if;
268
269 when S12 =>
270 if( maxExtTrigOutReached = ’1’) then
271 extTrigOutInternal <= ( others =>’0’);
272 else
273 extTrigOutInternal <=( extTrigOutInternal +1);
274 end if;
275
276 if( triggerDaInvRst_n =’0’) then
277 triggerDaInvInternal <= ’0 ’;
278 else
279 triggerDaInvInternal <= ’1 ’;
280 end if;
281
282 current_state <= S1;
283
284 when others => current_state <= S0;
285
286 end case ;
287
288 end if;
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289 end process ;
290
291
292 output : process ( current_state )
293 begin
294 case current_state is
295 when S0 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
296 triggerDaInv <= triggerDaInvInternal ;
297 adcStart <= ’1’;
298 photodiodeStart <= ’0’;
299 deserializerStart <= ’1’;
300 writeEnable <= ’0’;
301 adcPDEN <= ’0’;
302 wordOut <= ( others =>’0’);
303
304 when S1 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
305 triggerDaInv <= triggerDaInvInternal ;
306 adcStart <= ’1’;
307 photodiodeStart <= ’0’;
308 deserializerStart <= ’1’;
309 writeEnable <= ’0’;
310 adcPDEN <= ’0’;
311 wordOut <= ( others =>’0’);
312
313 when S2 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
314 triggerDaInv <= triggerDaInvInternal ;
315 adcStart <= ’1’;
316 photodiodeStart <= ’1’;
317 deserializerStart <= ’1’;
318 writeEnable <= ’1’;
319 adcPDEN <= ’0’;
320 wordOut <= ’1’ & std_logic_vector ( extTrigOutInternal );
321
322 when S3 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
323 triggerDaInv <= triggerDaInvInternal ;
324 adcStart <= ’1’;
325 photodiodeStart <= ’1’;
326 deserializerStart <= ’1’;
327 writeEnable <= ’0’;
328 adcPDEN <= ’0’;
329 wordOut <= ’1’ & std_logic_vector ( extTrigOutInternal );
330
331 when S4 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
332 triggerDaInv <= triggerDaInvInternal ;
333 adcStart <= ’1’;
334 photodiodeStart <= ’0’;
335 deserializerStart <= ’1’;
336 writeEnable <= ’0’;
337 adcPDEN <= ’0’;
338 wordOut <= ’1’ & std_logic_vector ( extTrigOutInternal );
339
340 when S5 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
341 triggerDaInv <= triggerDaInvInternal ;
342 adcStart <= ’0’;
343 photodiodeStart <= ’0’;
344 deserializerStart <= ’1’;
345 writeEnable <= ’0’;
346 adcPDEN <= ’0’;
347 wordOut <= ’1’ & std_logic_vector ( extTrigOutInternal );
348
349 when S6 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
350 triggerDaInv <= triggerDaInvInternal ;
351 adcStart <= ’0’;
352 photodiodeStart <= ’0’;
353 deserializerStart <= ’0’;
354 writeEnable <= ’0’;
355 adcPDEN <= ’0’;
356 wordOut <= ’1’ & std_logic_vector ( extTrigOutInternal );
357
358 when S7 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
359 triggerDaInv <= triggerDaInvInternal ;
360 adcStart <= ’1’;
361 photodiodeStart <= ’0’;
362 deserializerStart <= ’1’;
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363 writeEnable <= ’1’;
364 adcPDEN <= ’0’;
365 wordOut <= ’0’&" 000000 "& std_logic_vector ( channelCounter ) &’0’& dataIn ;
366
367 when S8 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
368 triggerDaInv <= triggerDaInvInternal ;
369 adcStart <= ’1’;
370 photodiodeStart <= ’0’;
371 deserializerStart <= ’1’;
372 writeEnable <= ’0’;
373 adcPDEN <= ’0’;
374 wordOut <= ’0’&" 000000 "& std_logic_vector ( channelCounter ) &’0’& dataIn ;
375
376 when S9 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
377 triggerDaInv <= triggerDaInvInternal ;
378 adcStart <= ’0’;
379 photodiodeStart <= ’0’;
380 deserializerStart <= ’1’;
381 writeEnable <= ’0’;
382 adcPDEN <= ’0’;
383 wordOut <= ’0’&" 000000 "& std_logic_vector ( channelCounter ) &’0’& dataIn ;
384
385 when S10 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
386 triggerDaInv <= triggerDaInvInternal ;
387 adcStart <= ’0’;
388 photodiodeStart <= ’0’;
389 deserializerStart <= ’0’;
390 writeEnable <= ’0’;
391 adcPDEN <= ’0’;
392 wordOut <= ’0’&" 000000 "& std_logic_vector ( channelCounter ) &’0’& dataIn ;
393
394
395 when S11 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
396 triggerDaInv <= triggerDaInvInternal ;
397 adcStart <= ’1’;
398 photodiodeStart <= ’0’;
399 deserializerStart <= ’1’;
400 writeEnable <= ’1’;
401 adcPDEN <= ’0’;
402 wordOut <= ’0’&" 000000 "& std_logic_vector ( channelCounter ) &’1’& dataIn ;
403
404 when S12 => extTrigOut <= std_logic_vector ( extTrigOutInternal );
405 triggerDaInv <= triggerDaInvInternal ;
406 adcStart <= ’1’;
407 photodiodeStart <= ’0’;
408 deserializerStart <= ’1’;
409 writeEnable <= ’1’;
410 adcPDEN <= ’0’;
411 wordOut <=" 01000000000000001101111010101101 ";
412
413 when others => extTrigOut <= std_logic_vector ( extTrigOutInternal );
414 triggerDaInv <= triggerDaInvInternal ;
415 adcStart <= ’1’;
416 photodiodeStart <= ’0’;
417 deserializerStart <= ’1’;
418 writeEnable <= ’0’;
419 adcPDEN <= ’0’;
420 wordOut <= ( others =>’0’);
421
422 end case ;
423 end process ;
424
425 end Behavioral ;

AdcClkAnalyzer.vhd

1 -- ------------------------------------------------------------------------------
2
3 -- AdcClkAnalyzer . vhd
4
5 -- ------------------------------------------------------------------------------
6
7 library IEEE;
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8 use IEEE. STD_LOGIC_1164 .ALL;
9 use IEEE. NUMERIC_STD .ALL;

10
11 entity AdcClkAnalyzer is
12 Port ( clk : in std_logic ;
13 clkAdc : in std_logic ;
14 rising : out std_logic );
15 end AdcClkAnalyzer ;
16
17 architecture Behavioral of AdcClkAnalyzer is
18
19 signal rised : std_logic := ’0 ’;
20 signal falled : std_logic := ’1 ’;
21
22 begin
23 process (clk , clkAdc )
24
25 begin
26 if( rising_edge (clk )) then
27 if( falled =’1’ and clkAdc =’1’ and rised =’0’) then
28 rising <= ’1 ’;
29 rised <= ’1 ’;
30 falled <= ’0 ’;
31 elsif ( rised =’1’ and clkAdc =’0’ and falled =’0’) then
32 falled <= ’1 ’;
33 rising <= ’0 ’;
34 rised <= ’0 ’;
35 else
36 rising <= ’0 ’;
37 end if;
38 end if;
39
40
41 end process ;
42
43 end Behavioral ;

TriggerAnalyzer.vhd

1 -- ------------------------------------------------------------------------------
2
3 -- TriggerAnalyzer .vhd
4
5 -- ------------------------------------------------------------------------------
6
7 library IEEE;
8 use IEEE. STD_LOGIC_1164 .ALL;
9 use IEEE. NUMERIC_STD .ALL;

10
11 entity TriggerAnalyzer is
12 Port ( clk : in std_logic ;
13 reset_n : in std_logic ;
14 trigger : in std_logic ;
15 rising : out std_logic ;
16 falling : out std_logic );
17 end TriggerAnalyzer ;
18
19 architecture Behavioral of TriggerAnalyzer is
20
21 signal rised : std_logic ;
22 signal falled : std_logic ;
23
24 begin
25 process (clk)
26
27 begin
28 if ( reset_n =’0’) then
29 rised <= ’0 ’;
30 falled <= ’1 ’;
31 falling <= ’0 ’;
32 rising <= ’0 ’;
33 elsif ( rising_edge (clk )) then
34 if( falled =’1’ and trigger =’1’ and rised =’0’) then
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35 rising <= ’1 ’;
36 rised <= ’1 ’;
37 falled <= ’0 ’;
38 falling <= ’0 ’;
39 elsif ( rised =’1’ and trigger =’0’ and falled =’0’) then
40 falling <= ’1 ’;
41 falled <= ’1 ’;
42 rised <= ’0 ’;
43 rising <= ’0 ’;
44 else
45 rising <= ’0 ’;
46 falling <= ’0 ’;
47 end if;
48 end if;
49
50
51 end process ;
52
53 end Behavioral ;

A.4 Test Bench

TestAdcClkAnalyzer.vhd

1 -- ------------------------------------------------------------------------------
2
3 -- TestAdcClkAnalyzer . vhd
4
5 -- ------------------------------------------------------------------------------
6 LIBRARY ieee;
7 USE ieee. std_logic_1164 .ALL;
8
9 ENTITY TestAdcClkAnalyzer IS

10 END TestAdcClkAnalyzer ;
11
12 ARCHITECTURE behavior OF TestAdcClkAnalyzer IS
13
14
15 COMPONENT AdcClkAnalyzer
16 PORT (
17 clk : IN std_logic ;
18 clkAdc : IN std_logic ;
19 rising : OUT std_logic
20 );
21 END COMPONENT ;
22
23
24 signal clk : std_logic := ’0’;
25 signal clkAdc : std_logic := ’0’;
26 signal rising : std_logic ;
27 constant clk_period : time := 10 ns;
28 constant clkAdc_period : time := 25 ns;
29
30 BEGIN
31
32 uut: AdcClkAnalyzer PORT MAP (
33 clk => clk ,
34 clkAdc => clkAdc ,
35 rising => rising
36 );
37
38 clk_process : process
39 begin
40 clk <= ’0’;
41 wait for clk_period /2;
42 clk <= ’1’;
43 wait for clk_period /2;
44 end process ;
45
46 clkAdc_process : process
47 begin
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48 clkAdc <= ’0’;
49 wait for clkAdc_period /2;
50 clkAdc <= ’1’;
51 wait for clkAdc_period /2;
52 end process ;
53
54
55 stim_proc : process
56 begin
57 wait for 100 ns;
58
59 wait for clk_period *10;
60
61 wait ;
62 end process ;
63
64 END;

TestClockDivider.vhd

1 -- ------------------------------------------------------------------------------
2
3 -- TestClock7Divider .vhd
4
5 -- ------------------------------------------------------------------------------
6 LIBRARY ieee;
7 USE ieee. std_logic_1164 .ALL;
8
9 -- Uncomment the following library declaration if using

10 -- arithmetic functions with Signed or Unsigned values
11 --USE ieee . numeric_std . ALL;
12
13 ENTITY TestClockDivider IS
14 END TestClockDivider ;
15
16 ARCHITECTURE behavior OF TestClockDivider IS
17
18 -- Component Declaration for the Unit Under Test ( UUT )
19
20 COMPONENT ClockDivider
21 PORT (
22 reset_n : IN std_logic ;
23 clkIn : IN std_logic ;
24 divisor : IN std_logic_vector (0 to 11);
25 clkOut : OUT std_logic
26 );
27 END COMPONENT ;
28
29
30 -- Inputs
31 signal reset_n : std_logic := ’0’;
32 signal clkIn : std_logic := ’0’;
33 signal divisor : std_logic_vector (0 to 11) := (9=>’1’, 11=>’1’, others => ’0’);
34
35 -- Outputs
36 signal clkOut : std_logic ;
37
38 -- Clock period definitions
39 constant clkIn_period : time := 10 ns;
40 constant clkOut_period : time := 10 ns;
41
42 BEGIN
43
44 uut: ClockDivider PORT MAP (
45 reset_n => reset_n ,
46 clkIn => clkIn ,
47 divisor => divisor ,
48 clkOut => clkOut
49 );
50
51 clkIn_process : process
52 begin
53 clkIn <= ’0’;
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54 wait for clkIn_period /2;
55 clkIn <= ’1’;
56 wait for clkIn_period /2;
57 end process ;
58
59
60
61 stim_proc : process
62 begin
63 wait for 100 ns;
64 reset_n <= ’1 ’;
65 wait for clkIn_period *1000;
66 divisor (11) <= ’1 ’;
67
68
69 wait ;
70 end process ;
71
72 END;

TestDeserializzatore.vhd

1 -- ------------------------------------------------------------------------------
2
3 -- TestDeserializzatore . vhd
4
5 -- ------------------------------------------------------------------------------
6 LIBRARY ieee;
7 USE ieee. std_logic_1164 .ALL;
8
9

10 ENTITY TestDeserializzatore IS
11 END TestDeserializzatore ;
12
13 ARCHITECTURE behavior OF TestDeserializzatore IS
14
15
16 COMPONENT Deserializzatore
17 generic ( width : integer := 16);
18 Port ( reset_n : in STD_LOGIC ;
19 clk : in STD_LOGIC ;
20 cs_n : in STD_LOGIC ;
21 datain : in STD_LOGIC ;
22 ready : out STD_LOGIC ;
23 dataout : out STD_LOGIC_VECTOR (width -1 downto 0));
24 END COMPONENT ;
25
26
27 signal reset_n : std_logic := ’0’;
28 signal clk : std_logic := ’0’;
29 signal cs_n : std_logic := ’0’;
30 signal datain : std_logic := ’0’;
31 signal ready : std_logic ;
32 signal dataout : std_logic_vector (15 downto 0);
33
34 constant clk_period : time := 10 ns;
35
36 BEGIN
37
38 uut: Deserializzatore PORT MAP (
39 reset_n => reset_n ,
40 clk => clk ,
41 cs_n => cs_n ,
42 datain => datain ,
43 ready => ready ,
44 dataout => dataout
45 );
46
47 clk_process : process
48 begin
49 clk <= ’0’;
50 wait for clk_period /2;
51 clk <= ’1’;
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52 wait for clk_period /2;
53 end process ;
54
55
56 stim_proc : process
57 begin
58 wait for clk_period /2;
59 reset_n <= ’0 ’;
60 cs_n <= ’1 ’;
61 wait for clk_period *100;
62 reset_n <= ’1 ’;
63 wait for clk_period *3;
64 cs_n <= ’0 ’;
65 datain <= ’1 ’;
66 wait for clk_period *3;
67 datain <= ’0 ’;
68 wait for clk_period *6;
69 datain <= ’1 ’;
70 wait for clk_period *2;
71 datain <= ’0 ’;
72 wait for 45 ns;
73 cs_n <= ’1 ’;
74 wait for clk_period *3;
75 cs_n <= ’0 ’;
76 datain <= ’1 ’;
77 wait for clk_period *5;
78 datain <= ’0 ’;
79 wait for clk_period *4;
80 datain <= ’1 ’;
81 wait for clk_period *2;
82 datain <= ’0 ’;
83 wait for clk_period *5;
84 cs_n <= ’1 ’;
85 wait ;
86 end process ;
87
88 END;

TestFIFO.vhd

1 -- ------------------------------------------------------------------------------
2
3 -- TestFIFO . vhd
4
5 -- ------------------------------------------------------------------------------
6 LIBRARY ieee;
7 USE ieee. std_logic_1164 .ALL;
8
9

10 ENTITY TestFIFO IS
11 END TestFIFO ;
12
13 ARCHITECTURE behavior OF TestFIFO IS
14
15
16 COMPONENT intFIFO
17 PORT (
18 rst : IN std_logic ;
19 wr_clk : IN std_logic ;
20 rd_clk : IN std_logic ;
21 din : IN std_logic_vector (31 downto 0);
22 wr_en : IN std_logic ;
23 rd_en : IN std_logic ;
24 dout : OUT std_logic_vector (31 downto 0);
25 full : OUT std_logic ;
26 empty : OUT std_logic ;
27 prog_full : OUT std_logic
28 );
29 END COMPONENT ;
30
31
32 signal rst : std_logic := ’0’;
33 signal wr_clk : std_logic := ’0’;
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34 signal rd_clk : std_logic := ’0’;
35 signal din : std_logic_vector (31 downto 0) := ( others => ’0’);
36 signal wr_en : std_logic := ’0’;
37 signal rd_en : std_logic := ’0’;
38
39 signal dout : std_logic_vector (31 downto 0);
40 signal full : std_logic ;
41 signal empty : std_logic ;
42 signal prog_full : std_logic ;
43
44 constant wr_clk_period : time := 10 ns;
45 constant rd_clk_period : time := 10 ns;
46
47 BEGIN
48
49 uut: intFIFO PORT MAP (
50 rst => rst ,
51 wr_clk => wr_clk ,
52 rd_clk => rd_clk ,
53 din => din ,
54 wr_en => wr_en ,
55 rd_en => rd_en ,
56 dout => dout ,
57 full => full ,
58 empty => empty ,
59 prog_full => prog_full
60 );
61
62 wr_clk_process : process
63 begin
64 wr_clk <= ’0’;
65 wait for wr_clk_period /2;
66 wr_clk <= ’1’;
67 wait for wr_clk_period /2;
68 end process ;
69
70 rd_clk_process : process
71 begin
72 rd_clk <= ’0’;
73 wait for rd_clk_period /2;
74 rd_clk <= ’1’;
75 wait for rd_clk_period /2;
76 end process ;
77
78
79 stim_proc : process
80 begin
81 rst <= ’1 ’;
82 wait for 100 ns;
83 rst <= ’0 ’;
84 wait for wr_clk_period *10;
85 wr_en <= ’1 ’;
86 wait for wr_clk_period *2;
87 wr_en <= ’0 ’;
88 din <=(5= > ’1 ’ , 2=>’1’, others => ’0’);
89 wait for wr_clk_period *10;
90 wr_en <= ’1 ’;
91 wait for wr_clk_period ;
92 wr_en <= ’0 ’;
93 wait for wr_clk_period *10;
94 wr_en <= ’1 ’;
95 wait for wr_clk_period ;
96 wr_en <= ’0 ’;
97 wait for wr_clk_period *10;
98 wr_en <= ’1 ’;
99 wait for wr_clk_period ;

100 wr_en <= ’0 ’;
101 wait for wr_clk_period *10;
102 rd_en <= ’1 ’;
103 wait for wr_clk_period ;
104 rd_en <= ’0 ’;
105 wait for wr_clk_period *10;
106 rd_en <= ’1 ’;
107 wait for wr_clk_period ;



A.4 Test Bench 113

108 rd_en <= ’0 ’;
109 wait for wr_clk_period *10;
110 rd_en <= ’1 ’;
111 wait for wr_clk_period ;
112 rd_en <= ’0 ’;
113 wait ;
114 end process ;
115
116 END;

TestFPGA.vhd

1 -- ------------------------------------------------------------------------------
2
3 -- TestFPGA . vhd
4
5 -- ------------------------------------------------------------------------------
6
7 LIBRARY ieee;
8 USE ieee. std_logic_1164 .ALL;
9

10
11 ENTITY TestFPGA IS
12 END TestFPGA ;
13
14 ARCHITECTURE behavior OF TestFPGA IS
15
16
17 COMPONENT FPGA
18 PORT (
19 rst_n : IN std_logic ;
20 trigger : IN std_logic ;
21 FPGA_Clk : IN std_logic ;
22 FSM_Clk : IN std_logic ;
23 extTrigger : IN std_logic ;
24 deseInput : IN std_logic ;
25 extFIFOFull : IN std_logic ;
26 wordOut : OUT std_logic_vector (31 downto 0);
27 photodiodeClkOut : OUT std_logic ;
28 photodiodeStart : OUT std_logic ;
29 intFIFOFull : OUT std_logic ;
30 busy : OUT std_logic ;
31 ADCStart : OUT std_logic
32 );
33 END COMPONENT ;
34
35
36 signal rst_n : std_logic := ’0’;
37 signal trigger : std_logic := ’0’;
38 signal FPGA_Clk : std_logic := ’0’;
39 signal ADC_Clk : std_logic := ’0’;
40 signal FSM_Clk : std_logic := ’0’;
41 signal extTrigger : std_logic := ’0’;
42 signal deseInput : std_logic := ’0’;
43 signal extFIFOFull : std_logic := ’0’;
44 signal wordOut : std_logic_vector (31 downto 0);
45 signal photodiodeClkOut : std_logic ;
46 signal photodiodeStart : std_logic ;
47 signal intFIFOFull : std_logic ;
48 signal busy : std_logic ;
49 signal ADCStart : std_logic ;
50 constant FPGA_Clk_period : time := 10 ns;
51 constant FSM_Clk_period : time := 8 ns;
52 constant ADC_Clk_period : time := 25 ns;
53
54 BEGIN
55
56 uut: FPGA PORT MAP (
57 rst_n => rst_n ,
58 trigger => trigger ,
59 FPGA_Clk => FPGA_Clk ,
60 ADC_Clk => ADC_Clk ,
61 FSM_Clk => FSM_Clk ,
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62 extTrigger => extTrigger ,
63 deseInput => deseInput ,
64 extFIFOFull => extFIFOFull ,
65 wordOut => wordOut ,
66 photodiodeClkOut => photodiodeClkOut ,
67 photodiodeStart => photodiodeStart ,
68 intFIFOFull => intFIFOFull ,
69 busy => busy ,
70 ADCStart => ADCStart );
71
72 FPGA_Clk_process : process
73 begin
74 FPGA_Clk <= ’0’;
75 wait for FPGA_Clk_period /2;
76 FPGA_Clk <= ’1’;
77 wait for FPGA_Clk_period /2;
78 end process ;
79
80 ADC_Clk_process : process
81 begin
82 ADC_Clk <= ’0’;
83 wait for ADC_Clk_period /2;
84 ADC_Clk <= ’1’;
85 wait for ADC_Clk_period /2;
86 end process ;
87
88 FSM_Clk_process : process
89 begin
90 FSM_Clk <= ’0’;
91 wait for FSM_Clk_period /2;
92 FSM_Clk <= ’1’;
93 wait for FSM_Clk_period /2;
94 end process ;
95
96
97 stim_proc : process
98 begin
99 rst_n <= ’0 ’;

100 wait for 100 ns;
101 rst_n <= ’1 ’;
102 wait for FPGA_Clk_period *100;
103 extTrigger <= ’1 ’;
104 wait for FPGA_Clk_period *10;
105 extTrigger <= ’0 ’;
106 wait for FPGA_Clk_period *500;
107 Trigger <= ’1 ’;
108 wait for FPGA_Clk_period ;
109 deseInput <= ’1 ’;
110 wait for FPGA_Clk_period *3;
111 deseInput <= ’0 ’;
112 wait for FPGA_Clk_period *46;
113 Trigger <= ’0 ’;
114 wait for FPGA_Clk_period *500;
115 Trigger <= ’1 ’;
116 wait for FPGA_Clk_period ;
117 deseInput <= ’1 ’;
118 wait for FPGA_Clk_period *3;
119 deseInput <= ’0 ’;
120 wait for FPGA_Clk_period *46;
121 Trigger <= ’0 ’;
122
123 wait ;
124 end process ;
125
126 END;

TestFSM.vhd

1 LIBRARY ieee;
2 USE ieee. std_logic_1164 .ALL;
3
4 ENTITY TestFSM IS
5 END TestFSM ;
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6
7 ARCHITECTURE behavior OF TestFSM IS
8
9

10 COMPONENT FSM
11 PORT (
12 intEmpty : IN std_logic ;
13 extFull : IN std_logic ;
14 clock : IN std_logic ;
15 reset_n : IN std_logic ;
16 wr_en : OUT std_logic ;
17 rd_en : OUT std_logic
18 );
19 END COMPONENT ;
20
21
22 signal intEmpty : std_logic := ’1’;
23 signal extFull : std_logic := ’0’;
24 signal clock : std_logic := ’0’;
25 signal reset_n : std_logic := ’0’;
26
27 -- Outputs
28 signal wr_en : std_logic ;
29 signal rd_en : std_logic ;
30
31 -- Clock period definitions
32 constant clock_period : time := 10 ns;
33
34 BEGIN
35
36 -- Instantiate the Unit Under Test ( UUT )
37 uut: FSM PORT MAP (
38 intEmpty => intEmpty ,
39 extFull => extFull ,
40 clock => clock ,
41 reset_n => reset_n ,
42 wr_en => wr_en ,
43 rd_en => rd_en
44 );
45
46 -- Clock process definitions
47 clock_process : process
48 begin
49 clock <= ’0’;
50 wait for clock_period /2;
51 clock <= ’1’;
52 wait for clock_period /2;
53 end process ;
54
55
56 -- Stimulus process
57 stim_proc : process
58 begin
59 -- hold reset state for 100 ns.
60 wait for 100 ns;
61 reset_n <= ’1 ’;
62 wait for clock_period *10;
63 intEmpty <= ’0 ’;
64 wait for clock_period *20;
65 extFull <= ’1 ’;
66 wait for clock_period *20;
67 extFull <= ’0 ’;
68 wait for clock_period *20;
69 intEmpty <= ’1 ’;
70 wait for clock_period *20;
71 extFull <= ’1 ’;
72
73 wait ;
74 end process ;
75
76 END;

TestTriggerAnalyzer.vhd
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1 -- ------------------------------------------------------------------------------
2
3 -- TestTriggerAnalyzer .vhd
4
5 -- ------------------------------------------------------------------------------
6 LIBRARY ieee;
7 USE ieee. std_logic_1164 .ALL;
8
9

10 ENTITY TestTriggerAnalyzer IS
11 END TestTriggerAnalyzer ;
12
13 ARCHITECTURE behavior OF TestTriggerAnalyzer IS
14
15 COMPONENT TriggerAnalyzer
16 Port ( clk : in std_logic ;
17 trigger : in std_logic ;
18 rising : out std_logic ;
19 falling : out std_logic );
20 END COMPONENT ;
21
22
23 signal trigger : std_logic := ’0’;
24 signal rising : std_logic ;
25 signal clk : std_logic := ’0 ’;
26 signal falling : std_logic ;
27 constant clk_period : time := 10 ns;
28 BEGIN
29
30 clk_process : process
31 begin
32 clk <= ’0’;
33 wait for clk_period /2;
34 clk <= ’1’;
35 wait for clk_period /2;
36 end process ;
37
38 uut: TriggerAnalyzer PORT MAP (
39 clk=>clk ,
40 trigger => trigger ,
41 rising => rising ,
42 falling => falling
43 );
44
45 stim_proc : process
46 begin
47 wait for 100 ns;
48 trigger <= ’1 ’;
49 wait for 50 ns;
50 trigger <= ’0 ’;
51 wait for 100 ns;
52 trigger <= ’1 ’;
53 wait for 50 ns;
54 trigger <= ’0 ’;
55
56 wait ;
57 end process ;
58
59 END;

TestUserlogic.vhd

1 -- ------------------------------------------------------------------------------
2 -- Company :
3 -- Engineer :
4 --
5 -- Create Date : 16:07:29 06/26/2012
6 -- Design Name :
7 -- Module Name : / Network / Servers / elegen04 . roma1 . infn .it/ Users / guglielmogemignani / IseProject / TestUser_Logic .vhd
8 -- Project Name : User_Logic_2 .0
9 -- Target Device :

10 -- Tool versions :
11 -- Description :
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12 --
13 -- VHDL Test Bench Created by ISE for module : user_logic
14 --
15 -- Dependencies :
16 --
17 -- Revision :
18 -- Revision 0.01 - File Created
19 -- Additional Comments :
20 --
21 -- Notes :
22 -- This testbench has been automatically generated using types std_logic and
23 -- std_logic_vector for the ports of the unit under test . Xilinx recommends
24 -- that these types always be used for the top - level I/O of a design in order
25 -- to guarantee that the testbench will bind correctly to the post - implementation
26 -- simulation model .
27 -- ------------------------------------------------------------------------------
28 library ieee;
29 use ieee. std_logic_1164 .all;
30 use ieee. std_logic_arith .all;
31 use ieee. std_logic_unsigned .all;
32
33 library proc_common_v3_00_a ;
34 use proc_common_v3_00_a . proc_common_pkg .all;
35
36 -- Uncomment the following library declaration if using
37 -- arithmetic functions with Signed or Unsigned values
38 --USE ieee . numeric_std . ALL;
39
40 ENTITY TestUser_Logic IS
41 END TestUser_Logic ;
42
43 ARCHITECTURE behavior OF TestUser_Logic IS
44
45 -- Component Declaration for the Unit Under Test ( UUT )
46
47 COMPONENT user_logic
48 PORT (
49 Ham_Eos : IN std_logic ;
50 Ham_Trigger : IN std_logic ;
51 Ham_ClkIn : IN std_logic ;
52 Ham_ClkOut : OUT std_logic ;
53 Ham_Reset_n : OUT std_logic ;
54 Ham_Gain : OUT std_logic ;
55 Ham_InStart : OUT std_logic ;
56 Adc_SDO : IN std_logic ;
57 Adc_ClkOut : OUT std_logic ;
58 Adc_CS_n : OUT std_logic ;
59 Adc_PDEn : OUT std_logic ;
60 Adc_ChSel : OUT std_logic ;
61 Gen_Clk : IN std_logic ;
62 Gen_L0_p : IN std_logic ;
63 Gen_L0_n : IN std_logic ;
64 Gen_L1_p : IN std_logic ;
65 Gen_L1_n : IN std_logic ;
66 Gen_L2_p : OUT std_logic ;
67 Gen_L2_n : OUT std_logic ;
68 Gen_L3_p : OUT std_logic ;
69 Gen_L3_n : OUT std_logic ;
70 Gen_C0 : IN std_logic ;
71 Gen_C1 : IN std_logic ;
72 Gen_C2 : OUT std_logic ;
73 Gen_C3 : OUT std_logic ;
74 Gen_ClkOut_p : OUT std_logic ;
75 Gen_ClkOut_n : OUT std_logic ;
76 Bus2IP_Clk : IN std_logic ;
77 Bus2IP_Reset : IN std_logic ;
78 Bus2IP_Data : IN std_logic_vector (0 to 31);
79 Bus2IP_BE : IN std_logic_vector (0 to 3);
80 Bus2IP_RdCE : IN std_logic_vector (0 to 7);
81 Bus2IP_WrCE : IN std_logic_vector (0 to 7);
82 IP2Bus_Data : OUT std_logic_vector (0 to 31);
83 IP2Bus_RdAck : OUT std_logic ;
84 IP2Bus_WrAck : OUT std_logic ;
85 IP2Bus_Error : OUT std_logic ;
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86 IP2RFIFO_WrReq : OUT std_logic ;
87 IP2RFIFO_Data : OUT std_logic_vector (0 to 31);
88 RFIFO2IP_WrAck : IN std_logic ;
89 RFIFO2IP_AlmostFull : IN std_logic ;
90 RFIFO2IP_Full : IN std_logic ;
91 RFIFO2IP_Vacancy : IN std_logic_vector (0 to log2 (16384))
92 );
93 END COMPONENT ;
94
95
96 -- Inputs
97 signal Ham_Eos : std_logic := ’1’;
98 signal Ham_Trigger : std_logic := ’0’;
99 signal Ham_ClkIn : std_logic := ’0’;

100 signal Adc_SDO : std_logic := ’0’;
101 signal Gen_Clk : std_logic := ’0’;
102 signal Gen_L0_p : std_logic := ’0’;
103 signal Gen_L0_n : std_logic := ’0’;
104 signal Gen_L1_p : std_logic := ’0’;
105 signal Gen_L1_n : std_logic := ’0’;
106 signal Gen_C0 : std_logic := ’0’;
107 signal Gen_C1 : std_logic := ’0’;
108 signal Bus2IP_Clk : std_logic := ’0’;
109 signal Bus2IP_Reset : std_logic := ’0’;
110 signal Bus2IP_Data : std_logic_vector (0 to 31) := ( others => ’0’);
111 signal Bus2IP_BE : std_logic_vector (0 to 3) := ( others => ’0’);
112 signal Bus2IP_RdCE : std_logic_vector (0 to 7) := ( others => ’0’);
113 signal Bus2IP_WrCE : std_logic_vector (0 to 7) := ( others => ’0’);
114 signal RFIFO2IP_WrAck : std_logic := ’0’;
115 signal RFIFO2IP_AlmostFull : std_logic := ’0’;
116 signal RFIFO2IP_Full : std_logic := ’0’;
117 signal RFIFO2IP_Vacancy : std_logic_vector (0 to log2 (16384)) := ( others => ’0’);
118
119 -- Outputs
120 signal Ham_ClkOut : std_logic ;
121 signal Ham_Reset_n : std_logic ;
122 signal Ham_Gain : std_logic ;
123 signal Ham_InStart : std_logic ;
124 signal Adc_ClkOut : std_logic ;
125 signal Adc_CS_n : std_logic ;
126 signal Adc_PDEn : std_logic ;
127 signal Adc_ChSel : std_logic ;
128 signal Gen_L2_p : std_logic ;
129 signal Gen_L2_n : std_logic ;
130 signal Gen_L3_p : std_logic ;
131 signal Gen_L3_n : std_logic ;
132 signal Gen_C2 : std_logic ;
133 signal Gen_C3 : std_logic ;
134 signal Gen_ClkOut_p : std_logic ;
135 signal Gen_ClkOut_n : std_logic ;
136 signal IP2Bus_Data : std_logic_vector (0 to 31);
137 signal IP2Bus_RdAck : std_logic ;
138 signal IP2Bus_WrAck : std_logic ;
139 signal IP2Bus_Error : std_logic ;
140 signal IP2RFIFO_WrReq : std_logic ;
141 signal IP2RFIFO_Data : std_logic_vector (0 to 31);
142
143 -- Clock period definitions
144 constant Gen_Clk_period : time := 4 ns;
145 signal count_adc : integer := 0;
146 signal count_i2p : integer := 0;
147
148 constant EXTDELAY : time := 1ns;
149
150 BEGIN
151
152 -- Instantiate the Unit Under Test ( UUT )
153 uut: user_logic PORT MAP (
154 Ham_Eos => Ham_Eos ,
155 Ham_Trigger => Ham_Trigger ,
156 Ham_ClkIn => Ham_ClkIn ,
157 Ham_ClkOut => Ham_ClkOut ,
158 Ham_Reset_n => Ham_Reset_n ,
159 Ham_Gain => Ham_Gain ,
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160 Ham_InStart => Ham_InStart ,
161 Adc_SDO => Adc_SDO ,
162 Adc_ClkOut => Adc_ClkOut ,
163 Adc_CS_n => Adc_CS_n ,
164 Adc_PDEn => Adc_PDEn ,
165 Adc_ChSel => Adc_ChSel ,
166 Gen_Clk => Gen_Clk ,
167 Gen_L0_p => Gen_L0_p ,
168 Gen_L0_n => Gen_L0_n ,
169 Gen_L1_p => Gen_L1_p ,
170 Gen_L1_n => Gen_L1_n ,
171 Gen_L2_p => Gen_L2_p ,
172 Gen_L2_n => Gen_L2_n ,
173 Gen_L3_p => Gen_L3_p ,
174 Gen_L3_n => Gen_L3_n ,
175 Gen_C0 => Gen_C0 ,
176 Gen_C1 => Gen_C1 ,
177 Gen_C2 => Gen_C2 ,
178 Gen_C3 => Gen_C3 ,
179 Gen_ClkOut_p => Gen_ClkOut_p ,
180 Gen_ClkOut_n => Gen_ClkOut_n ,
181 Bus2IP_Clk => Bus2IP_Clk ,
182 Bus2IP_Reset => Bus2IP_Reset ,
183 Bus2IP_Data => Bus2IP_Data ,
184 Bus2IP_BE => Bus2IP_BE ,
185 Bus2IP_RdCE => Bus2IP_RdCE ,
186 Bus2IP_WrCE => Bus2IP_WrCE ,
187 IP2Bus_Data => IP2Bus_Data ,
188 IP2Bus_RdAck => IP2Bus_RdAck ,
189 IP2Bus_WrAck => IP2Bus_WrAck ,
190 IP2Bus_Error => IP2Bus_Error ,
191 IP2RFIFO_WrReq => IP2RFIFO_WrReq ,
192 IP2RFIFO_Data => IP2RFIFO_Data ,
193 RFIFO2IP_WrAck => RFIFO2IP_WrAck ,
194 RFIFO2IP_AlmostFull => RFIFO2IP_AlmostFull ,
195 RFIFO2IP_Full => RFIFO2IP_Full ,
196 RFIFO2IP_Vacancy => RFIFO2IP_Vacancy
197 );
198
199 Gen_Clk_process : process
200 begin
201 Gen_Clk <= ’1’;
202 wait for Gen_Clk_period /2;
203 Gen_Clk <= ’0’;
204 wait for Gen_Clk_period /2;
205 end process ;
206
207 Bus2IP_Clk_process : process ( Gen_Clk )
208 begin
209 if( rising_edge ( Gen_Clk )) then
210 if ( count_i2p = 1) then
211 count_i2p <= 0;
212 else
213 count_i2p <= count_i2p +1;
214 end if;
215 if ( count_i2p = 0) then
216 Bus2IP_Clk <= NOT Bus2IP_Clk ;
217 end if;
218 end if;
219 end process ;
220
221
222 stim_proc : process
223 begin
224 wait for Gen_Clk_period *20;
225 Bus2IP_WrCE <=" 01000000 ";
226 Bus2IP_BE (1) <= ’1 ’;
227 Bus2IP_BE (2) <= ’1 ’;
228 Bus2IP_BE (0) <= ’1 ’;
229 Bus2IP_BE (3) <= ’1 ’;
230 Bus2IP_Data (27) <= ’1 ’;
231
232 wait for Gen_Clk_period *20;
233 Bus2IP_WrCE <=" 10000000 ";
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234 Bus2IP_Data (27) <= ’0 ’;
235 Bus2IP_Data (26) <= ’1 ’;
236 Bus2IP_Data (25) <= ’0 ’;
237 Bus2IP_Data (24) <= ’1 ’;
238 Bus2IP_Data (23) <= ’1 ’;
239 Bus2IP_Data (22) <= ’1 ’;
240 Bus2IP_Data (21) <= ’1 ’;
241 Bus2IP_Data (20) <= ’1 ’;
242 Bus2IP_Data (13) <= ’1 ’;
243 Bus2IP_Data (12) <= ’1 ’;
244 Bus2IP_Data (11) <= ’1 ’;
245 wait for Gen_Clk_period *20;
246 Bus2IP_WrCE <=" 10000000 ";
247 Bus2IP_Data (29) <= ’1 ’;
248 wait for Gen_Clk_period *2000;
249 Bus2IP_WrCE <=" 10000000 ";
250 Bus2IP_Data (0) <= ’0 ’;
251 wait for Gen_Clk_period *20;
252 Bus2IP_WrCE <=" 01000000 ";
253 Bus2IP_Data (27) <= ’1 ’;
254 Bus2IP_Data (29) <= ’0 ’;
255 Bus2IP_Data (26) <= ’0 ’;
256 Bus2IP_Data (25) <= ’0 ’;
257 Bus2IP_Data (24) <= ’0 ’;
258 Bus2IP_Data (23) <= ’0 ’;
259 Bus2IP_Data (22) <= ’0 ’;
260 Bus2IP_Data (21) <= ’0 ’;
261 Bus2IP_Data (20) <= ’0 ’;
262 Bus2IP_Data (13) <= ’0 ’;
263 Bus2IP_Data (12) <= ’0 ’;
264 Bus2IP_Data (11) <= ’0 ’;
265 Bus2IP_Data (0) <= ’0 ’;
266 Bus2IP_Data (1) <= ’1 ’;
267 wait for Gen_Clk_period *6395;
268 Gen_C0 <=’1’ after EXTDELAY ;
269 Ham_Trigger <=’1’ after EXTDELAY ;
270 wait for Gen_Clk_period *126;
271 Gen_C0 <=’0’ after EXTDELAY ; Bus2IP_BE (1) <= ’0 ’;
272 Bus2IP_BE (2) <= ’0 ’;
273 Bus2IP_BE (0) <= ’0 ’;
274 Bus2IP_BE (3) <= ’0 ’;
275 wait for Gen_Clk_period *3579;
276 Ham_Trigger <=’1’ after EXTDELAY ;
277 wait for Gen_Clk_period *128;
278 Ham_Trigger <=’0’ after EXTDELAY ;
279 wait for Gen_Clk_period *250;
280 Ham_Trigger <=’1’ after EXTDELAY ;
281 wait for Gen_Clk_period *128;
282 Adc_SDO <=’1’ after EXTDELAY ;
283 wait for Gen_Clk_period *22;
284 Adc_SDO <=’0’ after EXTDELAY ;
285 wait for Gen_Clk_period *100;
286 Ham_Trigger <=’0’ after EXTDELAY ;
287 wait for Gen_Clk_period *1000;
288 Ham_Trigger <=’1’ after EXTDELAY ;
289 wait for Gen_Clk_period *128;
290 Adc_SDO <=’1’ after EXTDELAY ;
291 wait for Gen_Clk_period *22;
292 Adc_SDO <=’0’ after EXTDELAY ;
293 wait for Gen_Clk_period *100;
294 Ham_Trigger <=’0’ after EXTDELAY ;
295 wait for Gen_Clk_period *1000;
296 Ham_Trigger <=’1’ after EXTDELAY ;
297 wait for Gen_Clk_period *128;
298 Adc_SDO <=’1’ after EXTDELAY ;
299 wait for Gen_Clk_period *22;
300 Adc_SDO <=’0’ after EXTDELAY ;
301 wait for Gen_Clk_period *100;
302 Ham_Trigger <=’0’ after EXTDELAY ;
303 wait for Gen_Clk_period *1000;
304 Ham_Trigger <=’1’ after EXTDELAY ;
305 wait for Gen_Clk_period *128;
306 Adc_SDO <=’1’ after EXTDELAY ;
307 wait for Gen_Clk_period *22;
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308 Adc_SDO <=’0’ after EXTDELAY ;
309 wait for Gen_Clk_period *100;
310 Ham_Trigger <=’0’ after EXTDELAY ;
311 wait for Gen_Clk_period *1000;
312 Ham_Trigger <=’1’ after EXTDELAY ;
313 wait for Gen_Clk_period *128;
314 Adc_SDO <=’1’ after EXTDELAY ;
315 wait for Gen_Clk_period *22;
316 Adc_SDO <=’0’ after EXTDELAY ;
317 wait for Gen_Clk_period *100;
318 Ham_Trigger <=’0’ after EXTDELAY ;
319 Ham_Eos <=’0’ after EXTDELAY ;
320 wait for Gen_Clk_period *250;
321 Ham_Eos <=’1’ after EXTDELAY ;
322 wait ;
323 end process ;
324
325 END;
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